[1] | F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan et al., “In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2431– 2434, 2010. |
[2] | P. Jackson, D. Hariskos, E. Lotter et al., “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Progress in Photovoltaics, vol. 19, no. 7, pp. 894–897, 2011. |
[3] | M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al- Jassim, “Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2Zn2SnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Physical Review B, vol. 84, no. 16, Article ID 165324, 5 pages, 2011. |
[4] | T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen et al., “Beyond 11% efficiency: characteristics of state-of-the-art cu2ZnSn(S,Se)4 solar cells,” Advanced Energy Materials, vol. 3, no. 1, pp. 34–38, 2013. |
[5] | B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey et al., “Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber,” Progress in Photovoltaics, vol. 21, no. 1, pp. 72–76, 2011. |
[6] | G. Zoppi, I. Forbes1, R.W.Miles1, P. J. Dalez, J. J. Scragg et al. “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Progress in Photovoltaics, vol.17, no. 5, pp. 315–319, 2009. |
[7] | H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw et al., “Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique,” Applied Physics Express, vol. 4, Article ID041201, 2008. |
[8] | L. Sun, J. He, H. Kong, F. Yue, P. Yang et al., “Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed Laser deposition method,” Solar Energy Materials and Solar Cells, vol. 95, no. 10, pp. 2907–2913, 2011. |
[9] | K. Maeda, K. Tanaka, Y. Fukui, and H. Uchiki, “Influence of H2S concentration on the properties of Cu 2ZnSnS4 thin films and solar cells prepared by solgel sulfurization,” Solar Energy Materials and Solar Cells, vol. 95, no. 10, pp. 2855–2860, 2011. |
[10] | B. S. Pawar, S. M. Pawar, K. V. Gurav, S. W. Shin, J. Y. Lee et al., “Effect of annealing atmosphere on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films,” ISRN Renewable Energy, vol. 2011, Article ID 934575, 5 pages, 2011. |
[11] | Q. Guo, G. M. Ford, W.-C. Yang et al., “Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals,” Journal of the American Chemical Society, vol. 132, no. 49, pp. 17384– 17386, 2010. |
[12] | F. Liu, K. Zhang, Y. Lai, J. Li, Z. Zhang, and Y. Liu, “Growth and characterization of Cu2ZnSnS4 thin films by dc reactive magnetron sputtering for photovoltaic applications,” Electrochemical and Solid-State Letters, vol. 13, no. 11, pp. H379–H381, 2010. |
[13] | H. Yoo and J. Kim, “Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films,” Thin Solid Films, vol. 518, no. 22, pp. 6567–6572, 2010. |
[14] | J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Solar Energy Materials and Solar Cells, vol. 75, no. 1-2, pp. 155–162, 2003. |
[15] | C. Platzer-Bj¨orkman, J. Scragg, H. Flammersberger, T. Kubart, and M. Edoff, “Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells,” Solar Energy Materials and Solar Cells, vol. 98, pp. 110–117, 2012. |
[16] | J. B. Li, V. Chawla, and B. M. Clemens, “Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy,” Advanced Materials, vol. 24, no. 6, pp. 720–723, 2012. |
[17] | W. M. Hlaing OO, J. L. Johnson, A. Bhatia, E. A. Lund, M. M. Nowell, and M. A. Scarpulla, “Grain size and texture of Cu2ZnSnS4 thin films synthesized by cosputtering binary sulfides and annealing: effects of processing conditions and sodium,” Journal of Electronic Materials, vol. 40,no. 11,pp. 2214– 2221, 2011. |
[18] | A. Khalkar, K. S. Lim, S. M. Yu, S. P. Patole, and J. B. Yoo, “Effect of growth parameters and annealing atmosphere on the properties of Cu2ZnSnS4 thin films deposited by cosputtering,” International Journal of Photoenergy, vol. 2013, Article ID 690165, 7 pages, 2013. |
[19] | S. Das, C. Frye, P. G. Muzykov and K. C. Mandal, “Deposition and Characterisation of low-cost spray pyrolyzed Cu2ZnSnS4 thin films for large area high efficiency heterojunction solar cells”, The Electrochemical Society #931, 2012. |
[20] | N. M. Shinde, D. P. Dubal, D. S. Dhawale, C. D. Lokhande, J. H. Kim and J. H. Moon, “Room Temperature novel chemical synthesis of Cu2ZnSnS4 ((CZTS) absorbing layer for photovoltaic application”, Materials Research Bulletin vol. 47, pp. 302 – 307, (2012). |
[21] | B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choi, C. J. Park, S. S. Kolekar, J. H. Kim, Appl. Surf. Sci. 257 (2010) 1786. |
[22] | N. Kamoun, H. Bouzouita, B. Rezig, “Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique” Thin Solid Films, 2007, 515, 5949-5952. |
[23] | Y.B. K. Kumar, G.S. Babu, P. U. Bhaskar, V.S.Raja, “Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films”Solar Energy Materials and Solar Cells, 2009, 93,1230-1237. |
[24] | Y.B. K. Kumar, G.S. Babu,P. U. Bhaskar, V.S. Raja, “Effect of starting-solution pH on the growth of Cu2ZnSnS4 thin films deposited by spray pyrolysis” Physica Status Solidi AApplications and Materials Science, 2009, 206, 1525-1530. |
[25] | T. Prabhakar, J. Nagaraji, “Ultrasonic spray pyrolysis of CZTS solar cell absorber layers and characterization studies”35th IEEE Photovoltaic Specialist Conference, 2010. |
[26] | T.P. Gujar, V.R. Shinde, C.D. Lokhande, R.S. Mane, S.H. Han, Appl. Surf. Sci. 250 (2005) 161. |
[27] | Isac, L.; Duta, A.; Kriza, A. Copper sulfides obtained by spray pyrolysis- Possible absorbers in solidstate solar cells. Thin Solid Films, 2007, 15, 5755-5758. |
[28] | Ienei, E.; Isac, L.; Duta, A. Synthesis of alumina thin films by spray pyrolysis. Revue Roumaine de Chimie, 2010, 3, 161-165. |
[29] | Krunks, M.; Bijakina, O.; Mikli, V.; Rebane, H.; Varema, T.; Altosaar, M.; Mellikov, E. Sprayed CuInS2 thin films for solar cells: The effect of solution composition and post-deposition treatments. Solar Energy Materials & Solar Cells, 2001, 69, 93-98. |
[30] | Patil, P.S. Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 1999, 59, 185-198. |
[31] | Oktik, S.; Russell, G. J.; Brinkman, A. W. Properties of ZnO layers deposited by photo-assisted” spray pyrolysis. Journal of Crystal Growth, 1996, 159, 195-199. |
[32] | K. Ito, T. Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films” Japanese Journal of Applied Physics, 1988, 27, 2094. |