[1] | Navier, L.M.H. 1879. Mechanics of Architecture. 2nd Ed., p. 62. Helwingsche Verlags-Buchhandlung, Hannover (in German). |
[2] | Seewald, F. 1927. Stresses and Deformations of Beams with Rectangular Cross-Sections. Abhandlungen aus dem Aerodynamischen Institut der T. H. Aachen, No. 7, pp. 11-33 (in German). |
[3] | Schneeweiß, G. 1963. Calculation of the Stress Distribution Using the Fracture Frequency.ÖsterreichischesIngenieur-Archiv, 17(2): 107-135 (in German). |
[4] | Schneeweiß, G. 1986. Checking of Loading Equipments, Stress Distributions, and Material Inhomogeneity by Means of the Frequency Distribution of Fracture Origin. Materialprüfung, 28(11): 354-356 (in German). |
[5] | Naschold, G. 1941. The Extreme Fibre Stresses of Straight Rectangular Beams under Single Loads. Der Bauingenieur, 22(5/6): 40-49 (in German). |
[6] | Tucker, J., Jr. 1941: Statistical Theory of the Effect of Dimensions and of Method of Loading upon the Modulus of Rupture of Beams. Proc. ASTM 41: 1072-1094. |
[7] | Steinhardt, O. 1938. Research on Wooden Joints or Wooden Structures Using Field of Forces. HolzalsRoh- und Werkstoff, 1(14): 537-538 (in German). |
[8] | Hooley, R.F. and Hibbert, P.D. 1967. Stress concentration in timber beams. J. of the Structural Division, Proc. of the American Society of Civil Engineers, 93(ST2): 127-139. |
[9] | Roš, M. 1925. S.I.A.-Standards for Wooden Structures. EMPA, Zürich (in German). |
[10] | Graf, O. and Egner, K. 1937/38. Variability of the Tension Strength of Spruce with the Shape and Size of the Gripping Heads of the Standard Specimen and with the Enlarging of the Cross-Section of the Specimen. HolzalsRoh- und Werkstoff, 1(10): 384-388 (in German). |
[11] | Rein, W. 1945. Notch Sensitivity of Wood. Dr.-Ing. thesis, Technische Hochschule Darmstadt, Deutschland (in German). |
[12] | Sumiya, K. and Sugihara, H. 1957. Size effets in the tensile and bending strength of wood. J. Japan Wood Res. Soc., 3(5): 168-173. |
[13] | Chudziński, Z. 1964. Strength Properties Determined by Different Testing Procedures for Solid Pinewood, Veneer-, Fibre-, Chip-, and Flax-Boards. Holztechnologie, 5(4): 233-240 (in German). |
[14] | Schneeweiß, G. 1972. Fracture and Formation of Carbide and Ferrite Cracks in Tensile Specimens Taken from Low Carbon Steels as a Composite Stochastic Process. Archiv Eisenhüttenwesen, 43(12): 913-917(in German). |
[15] | Kunesh, R.H. and Johnson, J.W. 1974. Effect of Size on Tensile Strength of Clear Douglas-fir and Hem-fir Dimension Lumber. For. Prod. J., 24(8): 32-36. |
[16] | Vorreiter, L. 1949. Handbook of Wood Technology, Vol. I: General, Woodology, Wood Preservation, and Modification of Wood. Verlag Georg Fromme& Co., Wien(in German). |
[17] | Comben, A.J. 1957. The Effect of Depth on the Strength Properties of Timber Beams with an Analysis of the Stresses and Strains Developed. Great Britain Dept. of Sci. and Ind. Res., For. Prod. Res. Spec. Rep. No. 12, Her Majesty´s Stationary Office, London, England. |
[18] | Malhotra, S.K. and Bazan, I.M.M. 1980. Ultimate bending strength theory for timber beams. Wood Sci., 13(1): 50-63. |
[19] | Glos, P. and Burger, N. 1995. Influence of the Dimensions on the Tensile Strength of Structural Lumber. Bericht 91501, Institut für Holzforschung, Universität München, Deutschland, 127 pp (in German). |
[20] | Burger, N. and Glos, P. 1996. Influence of the Dimensions on the Tensile Strength of Structural Lumber. HolzalsRoh- und Werkstoff, 54(5): 333-340(in German). |
[21] | Steiger, R. 1995. Bend-, Tension-, and Compression Tests on Swiss Spruce Wood. Forschungsbericht No. 207 des Instituts für Baustatik und Konstruktion, Fachbereich Stahl- und Holzbau, ETH Zürich. BirkhäuserVerlag, Basel(in German). |
[22] | Steiger, R. 1996. Mechanical Properties of Swiss Spruce Structural Timber Subjected to Bend-, Tension-, Compression-, and Combined M/N-Stress. Dr. thesis, ETH Zürich, Schweiz(in German). |
[23] | Burger, N. 1998. Effect of the Dimensions of Wood on the Strength of Lumber Subjected to Tensile Stress in Grain Direction. Dr. thesis, Techn. Univ. München, Deutschland (Berichte aus dem Bauwesen, Shaker Verlag, Aachen) (in German). |
[24] | Takeda, T. and Hashizume, T. 1999. Differences of tensile strength distribution between mechanically high-grade and low-grade Japanese larch lumber I: Effect of length on the strength of lumber. J. Wood Sci, 45(3): 200-206. |
[25] | Schneeweiß, G. 1964. Compressive Strength and Hoeffgen Hardness. HolzalsRoh- und Werkstoff, 22(7): 258-264 (in German). |
[26] | Schneeweiß, G. 1964. The Basic Trend of the Size Effect in the Compression Test of Concrete.ÖsterreichischenIngenieur-Archiv, 18(1/2): 22-46 (in German). |
[27] | Okohira, Y., Masuda, M., and Suzuki, N. 1989. The Size Effect of Compressive Strength of Wood. Bull Faculty Bioresources, Mie Univ., Japan, No. 2, pp. 13-21. |
[28] | Tanaka, F. 1909. International Association for Testing Materials. V. Conference, Copenhagen. Review on the Conference, II. Abteilung: Die Kongreßverhandlungen, pp. 190-191 (in German). |
[29] | Monnin, M. 1919. Physical Essay, Statics and Dynamics of Wood. Bull. Section Technique de L’AeronautiqueMilitaire, fascicules 29 et 30, Juin et Juillet, Paris (in French). |
[30] | Monnin, M. 1932. Testing of Wood. International Association for Testing Materials, Congrés de Zurich, 6-12 Septembre 1931, Tome II, pp. 85-115, Éditions A.I.E.M., Zurich (in French). |
[31] | Čižek, L. 1932. Contribution to Monnin[30], International Association for Testing Materials. Kongreß Zürich, Zürich, Schweiz, 1931, Kongreßbuch Vol. II, pp. 178-179 (in German). |
[32] | Ylinen, A. 1942. About the Effect of the Specimen Size on the Bending Strength of Wood. HolzalsRoh- und Werkstoff, 5(9): 299-305 (in German). |
[33] | Johnson, J.B. 1898. Progress in Timber Physics. Influence of size on test results; distribution of moisture. USDA, Division of Forestry, Circular No. 18, pp. 1-13. Washington. |
[34] | Talbot, A.N. 1909. Tests of Timber Beams. Univ. of Illinois. Eng. Exper. Station, Bull. No. 41. |
[35] | Cline, M. and Heim, A.L. 1912. Tests of structural timbers. USDA, Forest Service - Bull. 108. For. Prod. Lab. Series. Government Printing Office, Washington. |
[36] | Newlin, J.A. and Trayer, G.W. 1924. Form Factors of Beams Subjected to Transverse Loading only. Nat. Adv. Comm. for Aeronaut. Rep. No. 181, pp. 375-393. (Reprinted as USDA, Forest Service, For. Prod. Lab. Rep., No. 1310, Madison, Wis., 1941). |
[37] | Schlyter, R. and Winberg, G. 1929. The strength of Swedish redwood timber (pine) and its dependence on moisture-content and apparent specific gravity. StatensProvningsanstalt, Meddelande 42, Stockholm, Sverige, (also IVA, handlingar No. 92, 1929). |
[38] | Epstein, B. 1948. Statistical aspects of fracture problems. J. Appl. Phys., 19(2): 140-147. |
[39] | Fisher, R.A. and Tippett, L.H.C. 1928. Limiting forms of the frequency distribution of the smallest and the largest member of a sample. Proc. Cambr. Phil. Soc., 24, pp. 180-190. |
[40] | Schneeweiß, G. 1961. About the Effect of the Dull Edge on the Bending Strength of Structural Timber. Holzforschung und Holzverwertung, 13(6): 101-109 (in German). |
[41] | Schneeweiß, G. 1962. The Calculation of the Bending Strength (of Wood) Using the Strength of Uniaxial Tests. ÖsterreichischesIngenieur-Archiv, 17(1): 1-31 (in German). |
[42] | Schneeweiß. G. 1964. The Influence of Method of Loading, Span Length, and Compressive Strength Perpendicular to Grain on the Bending Strength. HolzalsRoh- und Werkstoff, 22(11): 418-423 (in German). |
[43] | Bohannan, B. 1966. Effect of size on bending strength of wood members. USDA, Forest Service, For. Prod. Lab., Research Paper FPL 56, Madison, Wis. |
[44] | Schneeweiß, G. 1969. Infuence of Dimensions on the Bending Strength of Wooden Beams. HolzalsRoh- und Werkstoff, 27(1): 23-29 (in German). |
[45] | Madsen, B. and Buchanan, A.H. 1986. Size effects in timber explained by a modified weakest link theory. Can. J. Civ. Eng., 13(2): 218-232. |
[46] | Madsen, B. 1990. Size effects in defect-free Douglas fir. Can. J. Civ. Eng., 17(2): 238-242. |
[47] | Madsen, B. and Tomoi, M. 1991. Size effects occurring in defect-free spruce-pine-fir bending specimens. Can. J. Civ. Eng., 18(10): 637-643. |
[48] | Chaplin, C.J. and Nevard, E.H. 1937. Strength Tests of Structural Timbers, Part 3. Development of Save Loads and Stresses, with Data on Baltic Redwood and Eastern Canadian Spruce. For. Prod. Res. Rec. No. 15, Her Majesty´s Stationary Office, London, England. |
[49] | Thunell, B. 1944. Effect of Certain Quality Influencing Factors on the Bending Strength of Swedish Redwood. SvenskTräforskningsinstitutet, TrätekniskaAvdelningen, Medd. No. 1, Stockholm (in Swedish). |
[50] | Denzler, J.K. 2007. Modelling of the Size Effect of Spruce Subjected to Bending. Dr. thesis, Techn. Univ. München, Deutschland (in German). |
[51] | Schneeweiß, G. 1966. Influence of the Chain Length on the Final Load of Chains. Materialprüfung, 8(6): 217-222 (in German). |
[52] | Schneeweiß, G. 1970. Contribution to the Statistical Description of the Size Effect on the Stength Behaviour of Different Materials. Habilitationsschrift, Techn. Univ. Wien, Österreich (in German). |
[53] | Schneeweiß, G. 1973. The Quasi-Brittle Fracture of Steels as a Problem of the Stochastics of Materials.ArchivEisenhüttenwesen, 44(2): 119-124 (in German). |
[54] | Schneeweiß, G. 1962. Shear Fracture of Wooden Beams Sujected to Bending Stresses. Holzforschung und Holzverwertung, 14(3): 41-47 (in German). |
[55] | Barrett, J.D., Lam, F., and Lau, W. 1995. Size effects in visually graded softwood structural lumber. J. of Materials in Civil Engineering, 7(1): 19-30. |
[56] | Baumann, R. 1922. Previous Results of Tests on Wood in the Materials Testing Laboratory of the Technical University Stuttgart. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, No. 231, Verlag des VDI, Berlin (in German). |
[57] | Kollmann, F. 1951. Technology of Wood and Wooden Materials, 2. Ed., Vol. 1. Springer Verlag: Berlin, Göttingen, Heidelberg, Reprint 1982 (in German). |
[58] | Kollmann, F.F.P. and Côté, W.A., Jr. 1968. Principles of Wood Science and Technology. Vol. I, Solid Wood. Springer-Verlag, Berlin, Heidelberg, New York. |
[59] | Ylinen, A. 1945. Determining the Stresses and Deflections of Wooden Beams with Rectangual Cross-Section. The Royal Swedish Institute for Engineering Research, Proceedings No. 182, Stockholm (IVA, handlingar No. 182) (in German). |
[60] | Bechtel, S.C. and Norris, C.B. 1959. Strength of wood beams of rectangular cross section as affected by span-depth ratio. USDA, Forest Service, For. Prod. Lab., Rept. No. 1910, Madison, Wis. |
[61] | Kühne, H., Fischer, H., Vodoz, J., and Wagner, Th. 1955. About the Influence of Water Content, Density, Grain Direction, and Annual Ring Position on Strength and Deformability of Swiss Spruce, Fir, Larch, European Beech, and Oak. Eidgenössische Materialprüfungs- und Versuchsanstalt für Industrie, Bauwesen und Gewerbe, Zürich, Schweiz, Bericht No. 183, Februar (in German). |
[62] | Madsen, B. and Nielsen, P.C. 1976. In-grade testing: size investigation on lumber subjected to bending. Structural Research Series Report No. 15, Department of Civil Engineering, University of British Columbia, Vancouver, Canada. |
[63] | Ehlbeck, J. and Colling, F. 1987. The Bending Strength of Glued Laminated Beams in Dependence of the Properties of the Board Lamination. bauenmitholz, 89(10): 646, 651-655 (in German). |
[64] | Kessel, M.H. 1990. Strength Tests on Oak Beams. bauenmitholz, 92(3): 174-180 (in German). |
[65] | Madsen, B. 1992. Structural Behaviour of Timber. Timber Engineering Ltd., North Vancouver, British Columbia, Canada. |
[66] | Duhamel du Monceau, H.L. 1767. About Transport, Conservation, and Strength of Wood, Book V: About the Strength of Wood, on the One Hand Pieces, on the Other Hand Assemblies, Both with Different Sizes. L. F. Delatour, Paris (in French). |
[67] | Nördlinger, H. 1860. Technical Properties of Wood. J. G. Cotta'scherVerlag, Stuttgart (in German). |
[68] | Wijkander, A. 1897. Determination of the Strength Properties of Swedish Wood Types Performed in the Material Testing Laboratory of the Chalmers Institute. Bihang till TekniskaSamfundetsHandlingar, No. 11, Göteborg, S. 7-13 (in German). |
[69] | Rudeloff, M. 1899. The Present State of Wood Research and of the Standardization of Testing Procedures. Mittheilungen aus den Königlichen technischen Versuchsanstalten zu Berlin, 17. Jahrgang, Verlag von Julius Springer, Berlin (in German). |
[70] | Tetmajer, L. 1896. Methods and Results of the Tests on Swiss Construction Timbers. Mitteilungen derMaterialprüfungs-Anstalt am schweiz. Polytechnikum in Zürich, 2. Auflage, Heft II, Zürich (in German). |
[71] | Grotta, A.T., Leichti, R.J., Gartner, B.L., and Johnson, G.R. 2005. Effect of growth ring orientation and placement of earlywood and latewood on MOE and MOR of very-small clear Douglas-fir beams. Wood and Fiber Science, 37(2): 207-212. |
[72] | Markwardt, L.J. and Wilson, T.R.C. 1935. Strength and related properties of wood grown in the United States. Forest Products Laboratory, Division of Research, Forest Service, USDA Washington, D.C., Technical Bulletin, No. 479, Sept. |
[73] | Forsaith, C.C. 1933. The Strength Properties of Small Beams (Match Stick Size) of Southern Yellow Pine. Bulletin of the N.Y. State College of Forestry at Syracuse University, Vol. 6, November, Technical Publication No. 42. |
[74] | Casati, E. 1932. Tests Comparing Specimens with Different Dimensions for Some Species of Wood. International Association for Testing Materials. Congrès de Zurich, Tome II, 1931 (Editions A.I.E.M., Zurich) (in French). |
[75] | Küch, W. 1937. Tests on Pine Wood. Luftwissen, 4(8): 254-255 (in German). |
[76] | Biblis, E.J. 1971. Flexural Properties of Southern Yellow Pine Small Beams Loaded on True Radial and Tangential Surfaces. Wood Science and Technology, 5(2): 95-100. |
[77] | Carrington, H. 1922. Young’s Modulus and Poisson’s Ratio for Spruce. Philosophical Magazine and Journal of Science, Ser. 6, 43(257): 871-878. |
[78] | Kollmann, F. 1941. The Ash and its Wood. Verlag von Julius Springer, Berlin (in German). |
[79] | Weiskopf, A. 1913. Hard Wood for Fabrication of Train Carriages. AnnalenfürGewerbe und Bauwesen, 72(6): 102-109, 72(7): 117-125, 72(8): 142-150 (in German). |
[80] | Gehri, E. 1997. Timber in compression perpendicular to grain. Int. Conf. of IUFRO S 5.02 Timber Engineering. Copenhagen, Denmark, 16-17 June 1997, pp. 355-374. |
[81] | Bodig, J. 1965. The effect of anatomy on the initial stress/strain relationship in transverse compression. For. Prod. J., 19(5): 197-202. |
[82] | Huber, B. and Prütz, G. 1938. About the Percentage of Fibers, Tracheas, and Parenchyma on the Composition of Different Wood. HolzalsRoh- und Werkstoff, 1(10): 377-381 (in German). |
[83] | Rothmund, A. 1944. About the Resistance of Wood Against Pressure Perpendicular to Grain. Dr. thesis, Techn. Hochschule Stuttgart, Deutschland (in German). |
[84] | Rothmund, A. 1949. About the Resistance of Wood Against Pressure Perpendicular to Grain. Bauplanung und Bautechnik, 3(12): 393-398 (in German). |
[85] | Kennedy, R.W. 1968. Wood in Transverse Compression. For. Prod. J., 18(3): 36-40. |
[86] | Ellis, S. and Steiner, P. 2002. The behaviour of five wood species in compression. IAWA Journal, 23(2): 201-211. |
[87] | Madsen, B., Hooley, R.F., and Hall, C. 1982. A design method for bearing stresses in wood. Can. J. Civ. Eng., 9(2): 338-349. |
[88] | Staudacher, E. 1936. Building Material Wood. Contributions to the Knowledge of Material Properties and Structural Elements. Promotionsarbeit, ETH Zürich, Gebr. Leemann& Co., Zürich (in German). |
[89] | Gaber, E. 1940. Compression Tests Perpendicular to Grain on Soft- and Hardwood. HolzalsRoh- und Werkstoff, 3(7/8): 222-226 (in German). |
[90] | Perelygin, L.M. 1965. Science of Wood. Drevesinovedenie, translated from the Russian by A. Gladstein. Higher School Publ. House, Moscow,199 p. |
[91] | Mönck, W. and Rug, W. 2000. Building in Timber: Design and Construction Considering Eurocode 5. 14. Aufl., VerlagBauwesen, Berlin (in German). |
[92] | Frey-Wyßling, A. and Stüßi, F. 1948. Strength and Deformation of Softwood Perpendicular to Grain. SchweizerischeZeitschriftfürForstwesen, 99(3): 106-114 (in German). |
[93] | Roš, M. 1937. Wood as Building Material. In: I. Schweizerischer Kongreß zur Förderung der Holzverwertung, Bern, Schweiz, 27.-31. Oktober 1936, pp. 32-72 (in German). |
[94] | Thunell, B. 1941. Strength Properties of Swedish Pine-Wood as Determined from Small Clear Specimens. The Royal Swedish Institute for Engineering Research, Proceedings No. 161, Stockholm, Sverige, 45 p. (IVA Handlingar No. 161). |
[95] | Tabarsa, T. and Chui, Y.H. 2001. Characterizing microscopic behavior of wood under transverse compression, part II. Effect of species and loading direction. Wood and Fiber Science, 33(2): 223-232. |
[96] | Kretschmann, D.E. 2008. Influence of Juvenile Wood Content on Shear Parallel, Compression, and Tension Transverse to Grain Strength and Mode I Fracture Toughness for Loblolly Pine. USDA, Forest Service, For. Prod. Lab., Research Paper FPL-RP-647, 25 p., Madison, Wis. |
[97] | Szalai, J. 1992. Indirect Determination of Shearing Strength of Wood Using the Anisotropic Strength Theory. HolzalsRoh- und Werkstoff, 50(6): 233-238 (in German). |
[98] | Gindl, W., Müller, U., and Teischinger, A. 2003. Transverse compression strength and fracture of spruce wood modified by melamine-formaldehyde impregnation of cell walls. Wood and Fiber Science, 35(2): 239-246. |
[99] | Sumiya, K., Kawagoe, N., and Sugihara, H. 1960. On the Size Effect in the Compression Strength of Hinoki. Wood Research, Bulletin of the Wood Research Institute, Kyoto Univ., Kyoto, Japan, No. 24, September, pp. 46-48. |
[100] | Ethington, R.L., Eskelsen, V., and Gupta, R. 1996. Relationship between compression strength perpendicular to grain and ring orientation. For. Prod. J., 46(1): 84-86. |
[101] | Hoffmeyer, P., Damkilde, L., and Pedersen, T.N. 2000. Structural Timber and Glulam in Compression Perpendicular to Grain. HolzalsRoh- und Werkstoff, 58(1/2): 73-85. |
[102] | Exner, W.F. 1871. Mechanical Technology of Wood, Vol. 1, 1st Part: Mechanical Technological Properties of Wood. W. Braumüller, Wien, Österreich (translation and revision of Chevandier, E. and Wertheim, G.: Mémoiresur les propriétésmécanique du bois. Paris, 1846) (in German). |
[103] | Wakefield, W.E. 1957. Determination of the Strength Properties and Physical Characteristics of Canadian Wood. Can. Dept. of Northern Affairs and National Resources. Canadian Forestry Service, Bulletin, No. 119, 64 pp. |
[104] | Lourenço, P.B., Feio, A.O., and Machado, J.S. 2007. Chestnut wood in compression perpendicular to grain: Non-destructive correlations for test results in new and old wood. Construction and Building Materials, 21(8): 1617-1627. |
[105] | Föppl, A. 1904. The Compression Strength of Wood Perpendicular to Grain. Mitteilungen aus dem mechanisch-technischen Laboratorium der k. Technischen Hochschule München, Neue Folge, No. 29, Theodor Ackermann, München (in German). |
[106] | Schwab, E. 1986. Characteristic of the Behaviour of Hardwood Perpendicular to Grain. HolzalsRoh- und Werkstoff, 44(7): 259-263 (in German). |
[107] | Ljungdahl, J., Berglund, L.A., and Burman, M. 2006. Transverse anisotropy of compressive failure in European oak – a digital speckle photography study. Holzforschung, 60(2): 190-195. |
[108] | Kunesh, R.H. 1968. Strength and elastic properties of wood in transverse compression. For. Prod. J., 18(1): 65-72. |
[109] | Nairn, J.A. 2006. Numerical Simulations of Transverse Compression and Densification in Wood. Wood and Fiber Science, 38(4): 576-591. |