American Journal of Materials Science
p-ISSN: 2162-9382 e-ISSN: 2162-8424
2012; 2(4): 119-124
doi: 10.5923/j.materials.20120204.04
L. P. Borilo , L. N. Spivakova
Tomsk State University, Tomsk, Russia
Correspondence to: L. P. Borilo , Tomsk State University, Tomsk, Russia.
| Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Zirconia thin films with thicknesses of 40-120 nm on glass, single-crystal silicon, quartz, polycor, and sapphire substrates have been prepared from zirconium oxochloride and ethanol FFSs. The physicochemical processes involved in film formation and the phase composition and properties of the films have been studied. The films prepared on glass or quartz are amorphous; those on silicon, polycor, or sapphire have a crystal structure. The resulting ZrO2 films have refractive index indicator 1,86 – 2,08, are insulators, with high indicators of bandgap width 5,0 – 5,2 eV, absorption edge is limited by 220 nM, which allows to use it as reallot light covering.
Keywords: Sol-Gel Technology, Thin Films, Zirconium Dioxide
![]() | (1) |
![]() | (2) |
![]() | (3) |
![]() | Figure 1. Reduced viscosity ηsp/c for the zirconium oxochloride-based FFS vs. zirconium oxochloride concentration с (g/dL) |
|
![]() | Figure 2. Data of differential thermal analysis а) Zirconium oxochloride powder b) Powder prepared from film-forming solutions based on zirconium oxochloride |
The thermolysis of the powder prepared from the FFS differs in that it contains the product of zirconium oxochloride thermolysis:
ZrO2 film formation is a more intricate process, as shown by piezocrystal weighing, IR spectroscopy, and X-ray powder diffraction. This process has the following distinguishing feature: when the solution is applied to the substrate, chloride ions remain in the solution and are not contained in the thin FFS layer on the substrate surface. The solution is anchored to the substrate via the interaction of zirconium hydroxo complexes with the surface hydroxide groups of the substrate as a result of hydrolysis. Schematically, subsequent dehydration in a thin layer can be represented as follows:
The IR spectra of a freshly applied film contain peaks corresponding to zirconium hydroxide and physisorbed water (Table 3). Film adhesion to the substrate is low; the refractive index is about 1.6, which is not characteristic of zirconia (Fig. 3). The refractive index of the film systematically increases during heat treatment as temperature increases, while the film thickness decreases to reach a steady-state value at 400℃ (Fig. 3). The values of 2.0-2.1 for the refractive index mean that the film composition corresponds to zirconia.
| ||||||||||||||||||||||||||
![]() | Figure 3. (1) Refractive index and (2) thickness vs. temperature for ZrO2 films |
![]() | Figure 4. Data of X-ray powder diffraction a)ZrO2 powder b) ZrO2 thin 1 – on glass; 2 – on quartz |
|
| ||||||||||||||||||||||||||||||||||||||||||||
![]() | Figure 5. Transmittance spectrum T (%) depending on wave length λ, nm 1-Quartz; 2- ZrO2 thin film on quartz |
| [1] | V. I. Vereshchagin, V. V. Kozik, L. R Borilo, et al., Poly-funcitonal Inorganic Materials based on Natural and Artifical Compounds (Izd-vo Tomsk. Univ., Tomsk, 2002)[in Russian]. |
| [2] | L. R Borilo, Thin-Film Inorganic Nanosystems (Izd-vo Tomsk. Univ., Tomsk, 2003)[in Russian]. |
| [3] | N.T. Soo, N. Prastomo, A Matsuda, G. Kawamura, H. Muto, A.F. Mohd Noor, Z. Lockman, K.Y. Cheong, Applied Surface Scince 258 (2012), 5250-5258 |
| [4] | J. Mosa, O. Fontaine, P. Ferreira, R. P. Borges, et al. Electrochimica Acta 56 (2011), 7155-7162 |
| [5] | H. Bensouyad, H. Sedraty, H Dehdouh, M.Brahimi, et al. Thin solid films 519 (2010), 96-100 |
| [6] | K. Joy, S. Lakshmy, Prabitha B. Nair, Georgi P. Daniel. Journal of Alloys and Compounds 512 (2012),149-155 |
| [7] | V. F. Petrunin, V. V. Popov, Khunchzhi Chzhu, and A. A. Timofeev, Neorg. Mater. 40 (3), 303 (2004). |
| [8] | N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Chem-istry and Technology of Nanodisperse Oxides (Aka-demkniga, Moscow, 2006)[in Russian]. |
| [9] | N. N. Oleinikov, I. V. Pentin, G. P. Murav'eva, and V.A. Ketsko, Zh. Neorg. Khim. 46 (9), 1413 (2001)[Russ. J. Inorg. Chem. 46 (9), (2001)]. |
| [10] | V. I. Pentin, N. N. Oleinikov, G. P. Murav'eva, et al., Neorg. Mater. 38 (10), 1203 (2002). |
| [11] | L. G. Karakchiev, E. G. Avvakumov, О. B. Vinokurova, et al., Zh. Neorg. Khim. 48 (10), 1589 (2003)[Russ. J. Inorg. Chem. 48 (10), (2003)]. |
| [12] | Yu. V. Kolen'ko, A. A. Burukhin, and B. R. Churagulov, Zh. Neorg. Khim. 47 (11), 1755 (2002)[Russ. J. Inorg. Chem. 47(11), (2002)]. |
| [13] | A. Yu. Bogoslovskii, E. G. Pribytkov, and G. A. Teren'eva, Zh. Prikl. Khim. 71 (2), 294 (1998). |
| [14] | V. V. Serebrennikov, G. M. Yakunina, V. V. Kozik, and A. N. Sergeev, Rare-Earth Elements and Their Compounds in Electronic Engineering (izd-vo Tomsk. Univ., Tomsk, 1980)[in Russian]. |
| [15] | В. M. Komranov and В. A. Shapochnykh, Measurements of Parameters of Optical Coatings (Mashinostroenie, Moscow, 1986)[in Russian]. L. P. Borilo, V. V. Kozik, N. A. Skorik, and V. V. Dyukov, Zh. Neorg. Khim. 40 (10), 1596 (1995). |
| [16] | R. V. Gryaznov, L. P. Borilo, V. V. Kozik, and A. M. Shul'pekov, Neorg. Mater. 37 (7) |
| [17] | V. V. Kozik, L. P. Borilo, and A. M. Shul'pekov, Zh. Prikl. Khim. 73 (11), 1872 (2000). |
| [18] | M. B. Fialko, Nonisothermal Kinetics in Thermal Analysis (Izd-vo Tomsk. Univ., Tomsk, 1981)[in Russian]. |
| [19] | V. V. Kozik, A. M. Shul'pekov, and L. P. Borilo, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 77 (2002, 828 (2001). |