American Journal of Materials Science
p-ISSN: 2162-9382 e-ISSN: 2162-8424
2012; 2(4): 110-118
doi: 10.5923/j.materials.20120204.03
B. Tilak
Department of Materials Science, Addis Ababa University, Addis Ababa, Ethiopia
Correspondence to: B. Tilak , Department of Materials Science, Addis Ababa University, Addis Ababa, Ethiopia.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Polycrystalline ceramics (Na0.5 Bi0.5)1-xBax ZryTi1-yO3, (BNBZT) (for x=0.10, 0.12; y=0.04), has been synthesized by conventional solid-state sintering. X-ray diffraction analysis indicates the formation of a single phase with tetragonal symmetry with pure perovskite structure. Scanning electron micrograph of the studied materials shows a distribution of grains. A broad dielectric peak with maximum permittivity has been observed near 1200 (for x=0.10, y=0.04) and 1600 (for x=0.12, y=0.04) respectively in the temperature range, RT–600℃. This result indicates that these materials may have great potential for a variety of high temperature applications. These ceramics show diffuse phase transition and the transition temperature shifting toward higher temperature with increasing frequency, which represents the relaxor behvaiour. The relaxor materials obey modified Curie–Weiss law and Vogel–Fulcher relationship. The values of the diffuseness parameter γ=2 for x = 0.10 and 1.67 for x = 0.12, obtained from the fit of a modified Curie-Weiss law established the relaxor type nature. For a more detailed interpretation of the ac data, the complex impedance (Z*) and electric modulus (M*) as a function of frequency f (i.e., 45 Hz–5 MHz) has been simultaneously analysed. Impedance study reveals that there exists a temperature dependent electrical relaxation phenomenon in the materials. Modulus represents hopping of ions and localized motion in studied compositions. Conductivity obey’s Jonscher law
Keywords: Polycrystalline, lead-Free relaxors, Vogel-Fulcher relation, Impedance, Modulus , Conductivity
|
![]() | Figure 2. Temperature dependence of the dielectric constant and Tan δ for 0.10BNBZT and 0.12BNBZT |
|
![]() | Figure 3. ln[(εm/ εr-1)] Vs ln (T-Tm) at 1kHz |
![]() | Figure 4. Verifying Vogel-Fulcher Relation |
![]() | (1) |
![]() | (2) |
![]() | (3) |
![]() | Figure 5. Variation of the Z1 and Z11 with frequency at different temperatures for 0.10BNBZT |
![]() | (4) |
![]() | Figure 6. Variation of normalized imaginary part of the impedance (Z11/Z11max) as a function of frequency at different temperatures for 0.10BNBZT |
![]() | Figure 7. a: Arrhenius plot of Z11 peak frequencies for 0.10BNBZT; b: Frequency dependence of Z1 and Z11, corresponding Argand diagram(insert) for 0.10BNBZT |
![]() | Figure 8. Complex impedance plots (z11VsZ1) at several temperature of 0.10BNBZT (a similar behaviour was found for 0.12BNBZT) |
![]() | (5) |
![]() | (6) |
![]() | (7) |
![]() | Figure 9. Variation of M1 and M11 with frequency for 0.10BNBZT |
![]() | Figure 10. M″-Peak frequency showing Arrhenius behavior for 0.10BNBZT and 0.12BNBZT |
![]() | (8) |
![]() | (9) |
![]() | Figure 11. a: Frequency dependence of conductivity; b: Arrhenius plot of conductivity for x=0.10 |
![]() | Figure 12. Arrhenius dependence of dc conductivity (σdc) and the hopping frequency (ωHz) for 0.10BNBZT |
![]() | (10) |
![]() | (11) |
[1] | L. E. Cross, Ferroelectrics., 76 (1987) 241-67 and reference therein |
[2] | L. E. Cross, Ferroelectrics., 151 (1994) 305-20 and reference therein |
[3] | Z-G Ye, Key Engineering Materials., 155-156(1998) 81-122, |
[4] | Chen, I. W., J. Phys. Chem. Solids., 61(2000) 197-208 |
[5] | L. E. Cross, Nature (London), 432(2004) 24-25 |
[6] | M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, and J. Holc, J. Mater. Res., 19(6) (2004) 1849-54 |
[7] | M. D. Maeder, D. Damjanovic, N. Setter, J. Electroceram., 13, (2004)385-392 |
[8] | Y. Li, K. Moon and C. P. Wong, Science., 308(2005) 1419-1420 |
[9] | T. Maiti, R. Guo, and A. S. Bhalla, J. Appl. Phys., 100(11) (2006) 114109-1–6. |
[10] | C. Lei, A. A. Bokov and Z. G. Ye, J. Appl. Phys., 101(2007) 084105-1-9 |
[11] | H. Yu and Z. G. Ye, J. Appl. Phys, 103(2008) 034114-1-5 |
[12] | L. Zhang, X. Wang, W. Yang, H. Liu and X. Yao, J. Appl. Phys., 104(2008) 014104-1-5 |
[13] | J. Ryu, S. Priya nd K. Uchino, Appl. Phys. Lett., 82(2003) 251-253 |
[14] | H. L. Du, W. C. Zhu, F. Luo, D. M. Zhu, S. B. Qu, Y. Li and Z. B. Pei, J. Appl. Phys., 104(2008) 044104-1-5 |
[15] | C. J. Stringer, T. R. Shout and C.A. Randall, J. Appl. Phys., 101,(2007) 054107-1-6 |
[16] | H. Ogihara, C.A. Randall and T. M. Susan, J. Am. Ceram. Soc., 90(1) (2009) 110–118 |
[17] | T. Takenaka, K. Maruyama, and K. Sakata, J. JAP, Part 1-Regular Papers Short Notes & Review Papers., 30[9B](1991) 2236-9 |
[18] | L. Gao, Y. Huang, Yan hu, hongyan Du, CeramicInternational., 33 (6)(2007) 1041-1046 |
[19] | Liu Yunfie, XUMing, SHI shuzhe, XUHanqiao, YANG Xiaodong, J. Wuhan University of technology-materials Science dition., 22(2) (2007)315-319 |
[20] | A. A. Bokov and Z. G. Ye, J. Mater. Sci., 41(1) (2006) 31-52 |
[21] | B. Beleckas, J. Grigas, S. Stefanovich, Litovskii Fizicheskii sbornik., 202(1989) 29 |
[22] | B. E. Vugmeister, M. D. Glinichuk, Rev. Mod. Phys., 62(1990) 993–1026 |
[23] | T. Badapanda, S. K. Rout, S. Panigrahi, T. P. Sinha, J. Current Applied Physics., 9(4) (2009) 727-731 |
[24] | T. A. Nealon, Ferroelectrics., 76(1)(1987), 377-382 |
[25] | S. A. Ahmed, E. M. M. Ibrahim, S. S. Saleh, Applied Physics A: Materials Science and Processing., 85(2)(2006) 177-184 |
[26] | A. k. Jonsher, K. L. Deori, J. M. Reau and J. Moali, J. Mater. Scien., 14(6)(1979) 1308-1320 |
[27] | P. B. Macdo, C. T. Moynihan, and R. Bose, J. Phy. Chem. Glass., 13(6)(1972) 171-179 |
[28] | J. Liu, Ch-Duan, W. G. Yin, W. N. Mei, R. W. Smith, J. R. Harday, J. Chem. Phys., 119(2003) 2812-19 |
[29] | N. Hirose, A. R. West, J. Am. Ceram. Soc., 79(1996) 1633-164 |
[30] | B.V.Bahugunasaradhi, K. Srinivas, G. Prasad, S. V. Suryanaryana, T. Bhimasankaram, Mat Sci Eng B.,98(2003) 10- 16 |
[31] | Lily, K. Kumar, K. Prasad, R. N. P. Choudary, J. Alloys and Compounds., 453(1-2)(2008) 325-33 |
[32] | R. Y. Sun, S. J. Fan, J. D. Wu and Y. F. Lin., Proc. IEEE. Int. Frequency. Contr. Symp.,(1996) 113 – 117 |
[33] | S. Sen, P. Pramanik, R. N. P Choudary, J. Applied Physics A: Materials Science & Processing., 82(3)(2006) 549-557 |
[34] | R. M. Hill, C. Pickup, J. Mater. Scie., 20(12)(1985) 4431-4444, |
[35] | M. M. Kumar, Z. G. Ye, J. Appl. Phys., 90(2011) 934-4 |
[36] | V. Hornebecq, J. M. Reau and J. Ravez, Solid State Ionics., 127(2000) 231–240 |
[37] | V. Hornwbecq, Personal communication |