American Journal of Materials Science
p-ISSN: 2162-9382 e-ISSN: 2162-8424
2012; 2(3): 82-86
doi: 10.5923/j.materials.20120203.09
P. Venkatesan, J. Santhanalakshmi
Department of Physical Chemistry, University of Madras, Guindy Campus, A.C.Tech., Chennai Tamil Nadu, 600025, India
Correspondence to: J. Santhanalakshmi, Department of Physical Chemistry, University of Madras, Guindy Campus, A.C.Tech., Chennai Tamil Nadu, 600025, India.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Colloidal bimetallic gold core palladium shell nanoparticles were prepared by wet chemical method, in which Au(III) and Pd(II) ions in an aqueous solution in the presence of a cationic surfactant, Cetyltrimethylammonium bromide (CTAB). The structure and composition of the metallic nanoparticles were characterized by UV-Vis, HRTEM, SEM-EDX, XRD, XPS and FTIR. The catalytic activities of nanoparticles are tested on the surface chemical characterization study of Cetyltrimethylammonium bromide supported Au-Pd bimetallic nanoparticle catalyst, hereafter named Au-Pdnp, is reported. Such a catalyst was developed for the Suzuki coupling reaction and found excellent catalytic activity. Here we describe the catalytic performance and the FTIR studies provide proof of the mode of binding that occurs in the Palladium nanoparticle surface for the first time and also confirms the mechanism of the Suzuki reaction.
Keywords: Bimetallic Nanoparticle, Suzuki Coupling Reaction, Surface Study, Thermal Method, FT-IR Study
|
![]() | Figure 1. (a-f) a-f FTIR spectra of Phenylboronic acid (PA), Sodium acetate (SA), SA + PA, bimetallic nanoparticles (bnp), bnp + PA, and bnp + SA + PA in 4000 to 400 cm-1 region (a) bnp, (b) SA, (c) PA, (d) SA + PA, (e), PA + bnp, (f) bnp + SA + PA at 25℃ |
![]() | Figure 2. Illustration of phenylboronate anion and the two possibilities of binding to the Au-Pd nanoparticle surface which can occur. The binding can occur through one B-O- group or through both B-O- groups |
![]() | Figure 3. a-e FTIR spectra of Iodobenzene (I), Sodium acetate (SA), bimetallic nanoparticles (bnp), SA + I, and bnp + SA + I in 4000 to 400 cm-1 region (a) bnp, (b) SA, (c) I, (d) I + SA, (e) I + SA + bnp at 25℃ |
[1] | Alain Roucoux, Jurgen Schulz, and Henri Patin, Chem. Rev. 102 (2002) 3757 - 3778. |
[2] | Peiwen Zheng, and Wangging Zhang. J. catal. 250 (2007) 324 - 330. |
[3] | L. N. Lewis, Chem. Rev. 93 (1993) 2693 - 2730. |
[4] | J. D. Aiken, Y. Lin, and R. G. Finke, J. Mol. Catal. A: Chem. 114 (1996) 29 - 51. |
[5] | H. Tsunoyama, H. Sakurai, Y. Negishi, and T. Tsukuda, J. Am. Chem. Soc. 127 (2005) 9374 - 9375. |
[6] | Yin Li, Edna Boone, and Mostafa A. El-Sayed, Langmuir. 18 (2002) 4921 - 4925. |
[7] | J. Dai, and M. L. Bruening, Nano Lett. 2 (2002) 497 - 501. |
[8] | W. Yoo, D. Hathcock, and M. A. El-Sayed, J. Phys. Chem. A. 106 (2002) 2049 - 2054. |
[9] | M. Nakaya, M. Kanehara, and T. Teranishi, Langmuir. 22 (2006) 3485 - 3487. |
[10] | X. Du, and N. Toshima, Chem. Lett. 35 (2006) 1254 - 1255. |
[11] | M. Chen, J. Kim, J. P. Liu, H. Fan, and S. Sun, J. Am. Chem. Soc. 128 (2006) 7132 - 7133. |
[12] | S. O. Keun, E. L. Kyung, S. H. Sung, H. C. Sun, K. Dongmin, and Y. Soon Hong, Biomacromolecules. 6 (2005) 1062 - 1067. |
[13] | Ajay Kumar Gupta, Stephen Wells, and Ieee Transactions On Nanobioscience, 3 (2004) 66 - 84. |
[14] | T. Teranishi, M. Nishida, and M. Kanehara, Chem. Lett. 34 (2005) 1004 - 1005. |
[15] | N. Watanabe, and N. Toshima, Bull. Chem. Soc. Jpn. 80 (2007) 208 - 214. |
[16] | R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. J. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger. Science 272 (1996) 1323 - 1325. |
[17] | P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer. J. Phys. Chem. B 103 (1999) 8706 - 8710. |
[18] | W. Baschong, and N. G. Wrigley, J. Electron Microsc. Tech. 14 (1990) 313 - 323. |
[19] | W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams, and A. P. Alivisatos, Nano Lett. 3 (2003) 33 - 36. |
[20] | Shiho Tokonami, Nobuyasu Morita, Kanako Takasaki, and Naoki Toshima J. Phys. Chem. C. (2010, in press) |
[21] | Karl J. J. Mayrhofer, Katrin Hartl, Viktorija Juhart, and Matthias Arenz J. Am. Chem. Soc., 2009, 131 (45), 16348–16349. |
[22] | N. Aihara, K. Torigoe, and K. Esumi, Langmuir 14 (1998) 4945 - 4949. |
[23] | P. Laura, V. Alberto, C. Claudio, and S. Paolo, Topics in Catal. 44 (2007) 319 - 335. |
[24] | J.K. Edwards, B.E. Selsone, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, and G.J. Hutchings, J. Catal. 236 (2005) 69 - 79. |
[25] | M.O. Nutt, J.B. Hughes, and M.S. Wong, Environ, Sci. Technol. 39 (2005) 1346 - 1353. |
[26] | Maureen R. Regan, and Ipsita A. Banerjee, Scripta Materialia. 54 (2006) 909 - 914. |
[27] | N. Miyaura, T. Yanagi, and A. Suzuki, Synth. Commun. 11 (1981) 513 - 519. |
[28] | N. Miyaura, and A. Suzuki, Chem. Rev. 95 (1995) 2457 - 2483. |
[29] | A. Suzuki, J. Organomet. Chem. 576 (1999) 147 - 148. |
[30] | N. Miyaura, Top. Curr. Chem. 219 (2002) 11 - 59. |
[31] | N. Kataoka, Q. Shelby, J.P. Stambuli, and J.F. Hartwig, J. Org. Chem. 67 (2002) 5553 - 5566. |
[32] | M. Miura, Angew. Chem., Int. Ed. 43 (2004) 2201 - 2203. |
[33] | K.W. Anderson, and S.L. Buchwald, Angew. Chem., Int. Ed. 44 (2005) 6173 - 6177. |
[34] | K. Sarkar,M. Nandi, M. Islam,M.Mubarak, and A. Bhaumik, Appl. Catal. A: Gen. 352 (2009) 81 - 86. |
[35] | M. Joshaghani, E. Faramarzi, E. Rafiee, M. Daryanavard, J. Xiao, and C. Baillie, J. Mol. Catal. A: Chem. 259 (2006) 35 - 40. |
[36] | T.E. Barder, J. Am. Chem. Soc. 128 (2006) 898 - 904. |
[37] | P. Han, H.M. Zhang, X.P. Qiu, X.L. Ji, and L.X. Gao, J. Mol. Catal. A: Chem. 295 (2008) 57 - 67. |
[38] | C. J. Li, Chem. Rev. 105 (2005) 3095 - 3166. |
[39] | E. Alacid, and C. Najera, Org. Lett. 10 (2008) 5011 - 5014. |
[40] | . Ma, X. L. Cui, L. Y. Gao, and Y. J. Wu, Inorg. Chem. Commun. 10 (2007) 762 - 766. |
[41] | J. Santhanalakshmi, and P. Venkatesan. J. nanopart. Res. 13, (2011), 479 – 490 |
[42] | J. A. Creighton, and D. G. Eadon, J. Chem. Soc., Faraday Trans. 87 (1991) 3881 - 3891. |
[43] | N. Toshima, and T. Yonezawa, New J. Chem. 22 (1998) 1179 - 1201. |
[44] | N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, J. Phys. Chem. 96 (1992) 9927 - 9933. |
[45] | J. A. Creighton, and D. G Eadon, J. Chem. Soc. Faraday Trans., 87 (1991) 3881 - 3891. |
[46] | T. E. Furtak, and J. Kester, Phys. Rev. Lett. 45 (1980) 1652 - 1655. |
[47] | C. J. Mathews, P. J. Smith, and T. Welton, Chem. Commun. (2000) 1249 - 1250. |
[48] | R. Rajagopal, D. V. Jarikote, and K. V. Srinivasan, Chem. Commun. (2002) 616 - 617. |
[49] | J. D. Revell, and A. Ganesan. Org. Lett. 4 (2002) 3071 - 3073. |
[50] | R. Narayanan, R. J. Lipert, and M. D. Porter, Anal. Chem. 80 (2008) 2265 - 2271. |
[51] | D. Syomin, and B. E. Koel. Surf. Sci., 490 (2001) 265 - 273. |