American Journal of Materials Science
p-ISSN: 2162-9382 e-ISSN: 2162-8424
2012; 2(1): 5-13
doi:10.5923/j.materials.20120201.02
B. Sreedhar1, Ch. Satya Vani2, D. Keerthi Devi1, M. V. Basaveswara Rao3, C. Rambabu2
1Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (Council of Scientific and Industrial Research), Hyderabad 500607 Andhra Pradesh, India
2Department of Chemistry, Acharya Nagarjuna University P.G. Centre, Nuzividu-521201, Andhra Pradesh, India
3Department of Chemistry, Krishna University, Machilipatnam-521001,Andhra Pradesh, India
Correspondence to: B. Sreedhar, Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (Council of Scientific and Industrial Research), Hyderabad 500607 Andhra Pradesh, India.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Different morphosynthesis strategies for BaCO3 using natural polysaccharide-gum acacia (GA) as templating species are presented. The influence of GA with different functionalities such as –OH, –COOH and -NH2 on the crystallization and structure formation was investigated. Some interesting morphologies, including rods, dumbbell, double-dumbbell and flower like clusters, can be readily generated by using GA as cooperative modifier in the mineralization process, under the conditions of 0.5%, 1% of templating species and at ambient temperature. The modifier GA and its concentration is the key factor in this system. In continuation, morphology was also examined for mixed metal carbonates (Ba-LaCO3, Ba-TbCO3). The possible formation mechanism of the nanocrystallites is discussed. Structural characterization of the synthesized materials was investigated byPowder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDAX), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA) coupled Mass (MS) and Fourier Transform Infrared spectroscopy (FT-IR).
Keywords: Biomaterials, Composite Materials, Crystal Growth, Electron Microscopy
Cite this paper: B. Sreedhar, Ch. Satya Vani, D. Keerthi Devi, M. V. Basaveswara Rao, C. Rambabu, Shape Controlled Synthesis of Barium Carbonate Microclusters and Nanocrystallites using Natural Polysachharide – Gum Acacia, American Journal of Materials Science, Vol. 2 No. 1, 2012, pp. 5-13. doi: 10.5923/j.materials.20120201.02.
Figure 1. Flow chart for the synthesis of microclusters of BaCO3 using gum acacia |
Figure 2. XRD pattern of BaCO3 crystals (a) absence of GA, (b) presence of GA (1%), (c) hydrothermal at 90℃ (1%), and (d) calcined at 700℃ (1%) |
Figure 3. SEM images of BaCO3 clusters (a) rod shaped witherite (aragonite-type) crystals without gum acacia (b, c) room temp reaction using 0.5 and 1.0 % GA, and (d, e) hydrothermal (90℃) reaction with 0.5 and 1.0 % GA |
Figure 4. Enlarged SEM images of BaCO3 clusters at different reaction conditions (a) 0.5% GA at room temperature, (b) 1% GA at room temperature, (c) 0.5% GA at hydrothermal 90℃, and (d) 1% GA at hydrothermal 90℃ |
Figure 5. TEM images and EDAX (SAED inserted) of BaCO3 (a, b) in the presence of 1% GA, and (c, d) calcined product at 700℃ |
Figure 6. SEM images of mixed metal carbonates (a) Short rod like clusters of Ba- LaCO3, (b) EDAX data of Ba-LaCO3, (c) Dendritic shaped clusters of Ba-TbCO3, and (d) EDAX data of Ba-TbCO3 |
Figure 7. FT-IR spectra of BaCO3 clusters (a) nucleated in the absence of GA, (b) nucleated in the presence of GA, and (c) calcined product at 700℃ |
Figure 8. TGA-DTG-MS thermograms (a) pure gum acacia, (b) BaCO3 synthesized without GA, (c) as synthesized BaCO3 using GA, and (d) as synthesized BaCO3 with GA calcined at 700℃ |
Figure 9. Schematic mechanism of BaCO3 clusters at different reaction conditions |
[1] | D. B. Deoliveira, and R. A. Laursen., 1997, Control of calcite crystal morphology by a peptide designed to bind to a specific surface, J. Am. Chem. Soc. 119(44), 10627-10631 |
[2] | T. Kato, A. Sugawara, and N. Hosoda., 2002, Calcium carbonate–organic hybrid materials” Adv. Mater. 14(12), 869-877. |
[3] | H. Colfen, and S. Mann., 2003, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed. 42(21), 2350-2365 |
[4] | S. H. Yu, and H. Colfen., 2004, Bio-inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem. 14(14), 2124-2147. |
[5] | H. Colfen, and S. H. Yu., 2005, Biomimetic Mineralization/Synthesis of Mesoscale Order in Hybrid Inorganic–Organic Materials via Nanoparticle Self-Assembly, MRS Bull. 30(10), 727-735 |
[6] | G. Falini, S. Albeck, and L. Addadi., 1996, Control of aragonite or calcite polymorphism by Mollusk shell macromolecules, Science. 271, 67-69 |
[7] | D. D. Sawall, R. M. Villahermosa, R. A. Lipeles, and A. R. Hopkins., 2004, Interfacial polymerization of polyaniline nanofibers grafted to Au surfaces, Chem. Mater. 16(9), 1606-1608 |
[8] | S.A. Morin, F.F. Amos, and S. Jin., 2007, Biomimetic assembly of zinc oxide nanorods onto flexible polymers, J. Am. Chem. Soc. 129(45), 13776-13777 |
[9] | T. X. Wang, A. Reinecke, and H. Colfen., 2006, In situ investigation of complex BaSO4 fiber generation in the presence of sodium polyacrylate. 2. Crystallization mechanisms, Langmuir, 22(21), 8986-8994 |
[10] | S. Tugulu, M. Harms, M. Fricke, D. Volkmer, H. and A. Klok., 2006, Polymer brushes as ionotropic matrices for the directed fabrication of microstructured calcite thin films, Angew. Chem. Int. Ed. 45(45), 7458-7461 |
[11] | S. Ludwigs, U. Steiner, A. N. Kulak, R. Lam, and F. C. Meldrum., 2006, Bioinspired polymer–inorganic hybrid materials, Adv. Mater. 18(17), 2270-2273 |
[12] | M. P. Pileni, T. Gulik-Krzywicki, J. Tanori, A. Filankembo, and J. C. Dedieu., 1998, Template design of microreactors with colloidal assemblies: Control the growth of copper metal rods, Langmuir, 14(26), 7359-7363 |
[13] | G. D. Rees, R. Evans-Gowing, S. J. Mammond, and B. H. Robinson., 1999, Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions, Langmuir 15(6), 1993-2002 |
[14] | A. L. Briseno, S. B. Mannsfeld, M. M. Ling, S. H. Liu, J. R. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. N. Bao., 2006, Patterning organic single-crystal transistor arrays, Nature, 444, 913-917 |
[15] | Y. H. Li, V. P. Kotzeva, and D. J. Fray., 2006, Electrochemical performance of CdS nanomaterials synthesized by microemulsion techniques, Mater Lett. 60 (21-22), 2743-2746 |
[16] | W. J. Liu, W. D. He, and Z. C. Zhang., 2006, Fabrication of CdS nanorods in inverse microemulsion using HEC as a template by a convenient γ-irradiation technique, J. Cryst. Growth 290 (2), 592-596 |
[17] | J. E. Schaefar, H. Kisker, H. Kronmuller, and R. Wurschum. 1992, Magnetic properties of nanocrystalline nickel, Nanostruct. Mater. 1(6), 523-529 |
[18] | S. Komarneni, M. C. D. Arrigo, C. Leionelli, G. C. Pellacani, and H. Kotuku., 1998, Microwave-hydrothermal Synthesis of nanophase ferrites, J Am. Ceram. Soc. 81, 3041-3044 |
[19] | P. P. Phule, and D. C. Grundy., 1994, Pathways for the low temperature synthesis of nano-sized crystalline barium zirconate, Mater Sci Eng B. 23(1), 29-35 |
[20] | A. Chatterjee, D. Das, S. K. Pradhan, and D. Chakravorty., 1993, Synthesis of nanocrystalline nickel-zinc ferrite by the sol-gel method, J Magn. Magn. Mater. 127 (1-2), 214-218 |
[21] | I. Sondi, and E. Matijevic., 2003, Homogeneous precipitation by enzyme-catalyzed reactions. 2. Strontium and barium carbonates, Chem. Mater. 15 (6), 1322-1326 |
[22] | D. M. Sun, Q. S. Wu, and Y. P. Ding., 2006, A novel method for crystal control: synthesis and design of strontium carbonate with different morphologies by supported liquid membrane, J. Appl. Cryst. 39 (4), 544-549 |
[23] | T. Wang, A.W. Xu, and H. Colfen., 2006, Formation of self-organized dynamic structure patterns of barium carbonate crystals in polymer-controlled crystallization, Angew. Chem. Int. Ed. 45 (27), 4451-4455 |
[24] | S. H. Yu, H. Colfen, and M. Antonietti., 2003, Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures, J. Phys. Chem. 107 (30), 7396-7405 |
[25] | S. H. Yu, H. Colfen, A. W. Xu, and W. Dong., 2004, Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes, Cryst. Growth and Des. 4(1), 33-37 |
[26] | L. Chen, Y. Shen, A. Xie, J. Zhu, Z. Wu, and L. Yang., 2007, Nanosized barium carbonate particles stabilized by cetyltrimethylammonium bromide at the water/hexamethylene interface, Cryst. Res. Technol. 42 (9), 886-889 |
[27] | K. Konno, M. Koide, and A. Kitahara., 1984, Preparation of barium carbonate particles using a W/O microemulsion, J. Chem. Soc. Jpn. 6, 815-822 |
[28] | K. Kandori, K. Kon-no, and A. Kitahara., 1988, Preparation of BaCO3 particles in ionic w/o microemulsions, J. Disp. Sci. Technol. 9(1), 61-73 |
[29] | L. Qi, J. Ma, H. Cheng, and Z. Zhao., 1997, Reverse micelle based formation of BaCO3 nanowires, J. Phys. Chem. B. 101(18), 3460-3463 |
[30] | M. Dinamani, P. V. Kamath, and R. Seshadri., 2003, Electrodeposition of BaCO3 coatings on stainless steel substrates, Cryst. Growth Des. 3 (3), 417-423 |
[31] | P. Balaz, and B. Plesingerova., 2000, Thermal propertie of mechanochemically pre-treated precursors of BaTiO3 synthesis, Journal of Thermal Analysis and Calorimetry, 59 (3) 1017-1021 |
[32] | B. F. Allen, N. M. Faulk, S. C. Lin, R. Semiat, D. Luss, and J. T. Richardson., 1992, A continous coprecipitation process for the production of 1-2-3 precursors, AIChE Symp. Ser. 88, 76-87 |
[33] | J. J. Macketta., 1977, Encyclopedia of Chemical Processing and Design, Marcel Dekker, New York, 51 |
[34] | A. Taubert, G. Glasser, and D. Palms., 2002, Kinetics and particle formation mechanism of zinc oxide particles in polymer-controlled precipitation from aqueous solution, Langmuir 18(110), 4488-4494 |
[35] | J. Norwig, W. H. Meyer, and G. Wegner., 1998, Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer, Chem. Mater. 10(2), 460-463 |
[36] | D. K. Devi, S. V. Pratap, R. Haritha, K. S. Sivudu, P. Radhika, and B. Sreedhar., 2011, Gum acacia as a facile deducing, stabilizing, and templating agent for palladium nanoparticles, J. Appl. Polym. Sci. 121(3), 1765-1773 |
[37] | B. Sreedhar, P. S. Reddy, and D. K. Devi., 2009, Direct one-pot reductive amination of aldehydes with nitroarenes in a domino fashion: catalysis by gum-acacia-stabilized palladium nanoparticles, J. Org. Chem. 74(22), 8806-8809 |
[38] | H. Colfen, and M. Antonietti., 1998, Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers, Langmuir 14(3), 582-589 |
[39] | N. A. J. M. Sommerdijk, and G. de. With, 2008, Biomimetic CaCO3 mineralization using designer molecules and interfaces, Chem. Rev. 108(11), 4499-4550 |
[40] | H. Colfen., 2001, Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers, Macromol. Rapid Commun. 22(4), 219-252 |
[41] | L. M. Qi, H. Colfen, M. Antonietti, M. Li, J. D. Hopwood, A. J. Ashley, and S. Mann., 2001, Formation of BaSO4 fibres with morphological complexity in aqueous polymer solutions, Chem. Eur. J. 7(16), 3526-3532 |
[42] | L. M. Qi, H. Colfen, and M. Antonietti., 2000, Crystal design of barium sulfate using double-hydrophilic block copolymers, Angew. Chem. Int. Ed. 39(3), 604-607 |
[43] | A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stuky, and D. E. Morse., 1996, Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature 381, 56-58 |
[44] | S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall., 1988, Controlled crystallization of CaCO3 under stearic acid monolayers, Nature 334, 692-694 |
[45] | H. Colfen, and L. Qi., 2002, The mechanism of the morphogenesis of CaCO3 in the presence of poly(ethylene glycol)- b -poly(methacrylic acid), Prog. Colloid Polym. Sci. 117, 200-203 |
[46] | R. Kniep, and S. Busch., 1996, Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion into denatured collagen matrices, Angew. Chem., Int. Ed. Engl. 35(22), 2624-2626 |
[47] | S. Busch, H. Dolhaine, A. DuChesne, S. Heinz, O. Hochrein, F. Laeri, O. Podebrad, U. Vietze, T. Weiland, and R. Kniep., 1999, Biomimetic morphogenesis of fluorapatite-gelatin composites: Fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen., Eur. J. Inorg. Chem. 1999(10), 1643-1653 |
[48] | S. Sindhu, S. Jegadesan, R. A. Edward Leong, and S. Valiyaveettil., 2006, Morphosynthesis of mixed metal carbonates using micellar aggregation., Crystal Growth & Design. 6(6), 1537-1541 |
[49] | N. H. De Leeuw,, 2002, Molecular dynamics simulations of the growth inhibiting effect of Fe 2+ , Mg 2+ , Cd 2+ and Sr 2+ on calcite crystal growth., J. Phys. Chem. B. 106(20), 5241-5249 |