American Journal of Materials Science
p-ISSN: 2162-9382 e-ISSN: 2162-8424
2011; 1(1): 45-51
doi: 10.5923/j.materials.20110101.07
Abbès Beloufa 1, Zouaoui Bensaad 1, Bel-Abbes Soudini 1, Nadir Sekkal 2, Abdellah Bensaad 1, Hamza Abid 1
1University of Sidi Bel Abbès, 22000 Sidi Bel Abbès, Algeria
2Département de Physique-Chimie, ENST, BP 1523, El M’Naouer, 31000 Oran, Algeria
Correspondence to: Abbès Beloufa , University of Sidi Bel Abbès, 22000 Sidi Bel Abbès, Algeria.
| Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
This paper reports the first-principles calculations of the electronic and the structural properties of AlN, GaN, InN, AlGaN and InGaN in various crystal structures. The computational method used to investigate the structural and the electronic properties is the full potential linear muffin-tin orbital (FP-LMTO) augmented by a plane-wave basis (PLW). Exchange-correlation has been accounted for within LDA using the exchange-correlation potential calculated by Vosko et al. and Perdew et al. The latter parameterisation takes into consideration the generalized gradient approximation (GGA). The results of the calculated properties for the considered compounds in the zincblende and wurtzite phases are discussed and compared to the theoretical works as well as to the experimental data. We have also applied this computational method to AlGaN and InGaN alloys to check its transferability to predict the structural and electronic properties from those of their parent compounds. As an example, we have interested to the heterojunction based on the studied compounds. So, we have presented the theoretical analysis of the gain characteristics of InGaN/AlGaN quantum dot (DL) laser. The results obtained confirm the powerful of the method used for the calculation on the one hand, and in the other hand, the III-V nitride compounds and their alloys are potential candidates for new generation of light emitters likes the lasers diode.
Keywords: Electrical Properties, Structural Properties, (In, Al, Ga)N, Gain, Lasers Diodes, LMTO Methods
Cite this paper: Abbès Beloufa , Zouaoui Bensaad , Bel-Abbes Soudini , Nadir Sekkal , Abdellah Bensaad , Hamza Abid , "Ab initio Calculations of Structural and Electronic Properties of the III-V Nitride Compounds and their Applications to Laser Diodes", American Journal of Materials Science, Vol. 1 No. 1, 2011, pp. 45-51. doi: 10.5923/j.materials.20110101.07.
, and in Fourier series in the interstitial region. In the muffin-tin spheres (MTS) of radius RMT, the upper limit on the angular momentum expansion of the smoothed Hankel functions about a given atomic site is carried out up to
[24].
. Two energy gaps can be defined by
and
according to the optical transition
and
. In GaN,
is the fundamental gap, whereas in AlN it is the C transition gap due to the negative crystal field splitting[28,29].In order to characterize the optical gain and the threshold current density of laser diodes for different temperatures (transparency density) and cavity length in our laser structures, we have calculated the energy bandgaps and the refractive index. Optimization of intrinsic and extrinsic parameters such that: absorption coefficient (α), electronic affinity (χ), confinement factor (Γ) and effective mass, represents the principle stage in the design of a laser diode. These optimized parameters are obtained using the combined LMTO method, Mathematica and Mathcad calculations. The first structure studied is the simple heterostructure based on the studied compounds. Above this transparency threshold, the medium begins to amplify those photons possessing energies which satisfy the Bernard—Durrafourg condition. The gain spectrum is then given by:![]() | (1) |
is the gain of the semiconductor medium
is the empty conduction band absorption (i.e. under zero current) with[43]:![]() | (2) |
and
are the occupation rates for the levels in the conduction and valence bands satisfying
.![]() | Figure 1. The band structure of GaN, InN, AlN, InGaN and AlGaN in the equilibrium phase for the equilibrium volume. |
![]() | Figure 2. Evolution of the quasi-Fermi level difference as a function of non-equilibrium carrier density in InGaN. |
![]() | Figure 3. Evolution of the gain curve maximum in InGaN as a function of electron-hole pair density. |
will lasing) shows a linear increase with the density of carriers to the above of the threshold of transparency. In Fig. 4, we have illustrated the evolution of the gain according to the energy of the photons for various densities of injection in the two materials (GaN and In0.5Ga0.5N). Once transparency has been achieved, the maximum gain increases linearly with charge density above threshold. This purely phenomenological relationship is very useful in modelling the behaviour of semiconductor lasers.![]() | Figure 4. Evolution of the Gain according to the energy of the photons for various densities of injection in the two materials (a) GaN, (b) (In0.5Ga0.5N). |
![]() | Figure 5. Evolution of the maximum Gain according to the current of pumping for various values thickness of the two materials (a) GaN, (b) (In0.5Ga0.5N). |
| [1] | S. Nakamura, T. Mokai, M. Senoh, Jpn. Appl. Phys. 30 (1991) 1998 |
| [2] | S. Nakamura, T. Mokia, M. Senoh, Appl. Phys. Lett. 64 (1994)1687 |
| [3] | A. Sher, M. van Schilfgaarde, M. A. Berding, S. Krishnamurthy, and A.-B. Chen, MRS Internet J. Nitride Semicond. Res. 4S1, G5.1 (1999) |
| [4] | A. Qteish , A.I. Al-Sharif , M. Fuchs , M. Scheffler , S. Boeck , J. Neugebauer, Computer Physics Communications 28–31, (2005) 169 |
| [5] | T.V. Shubina, Phys. Rev. Lett. 92, (2004) 117407 |
| [6] | A. Kobayashi, O. F. Sankey, S. M. Volz and J. D. Dow, Phys. Rev. B28, (1983) 935 |
| [7] | P. E. Van Camp, V. E. Van Doren and J. T. Devreese, Phys. Rev. B44, (1991) 9056 |
| [8] | Kwiseon Kim, Ph.D. thesis 1998, Case Western Reserve University, unpublished. |
| [9] | Y. K. Kuo, and B-T Liou, S. H. Yen, and H. Y. Chu Opt. Commun. 237 (2004) 363-9 |
| [10] | A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, (1994) 1952 |
| [11] | Z. Dridi, B. Bouhafs, P. Ruterana, Comput. Mater. Sci. 33 (2005) 136-40 |
| [12] | S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. Lett., vol. 34, (1995) pp. L1332–L1335 |
| [13] | S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., vol. 35, (1996) pp. L74–L76 |
| [14] | K. Itaya, M. Onomura, J. Nishino, L. Sugiura, S. Saito, M. Suzuki, J. Rennie, S. Nunoue, M. Yamamoto, H. Fujimoto, Y. Kokubun, Y. Ohba, G. Hatakoshi, and M. Ishikawa, Jpn. J. Appl. Phys., vol. 35, (1996) pp. L1315–L1317 |
| [15] | S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., vol. 69, (1996) pp. 3034–3036 |
| [16] | S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., vol. 69, (1996) pp. 4056–4058 |
| [17] | S. Strite and H. Morko¸c, J. Vac. Sci. Technol., vol. B10, (1992) pp. 1237–1266 |
| [18] | M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, Appl. Phys. Lett., vol. 62, (1993) pp. 1786–1788 |
| [19] | S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., vol. 69, (1996) pp. 4188–4190 |
| [20] | S.H.Vosko, L.Wilk and M. Nussair, Can. J. Phys. 58 (1980)1200 |
| [21] | J. P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865 |
| [22] | S. Y. Savrasov, Phys Rev B 54 (1996) 16470 |
| [23] | http://www.physics.ucdavis.edu/∼mindlab/Orbitals, Vienna University of Technology, Vienna, Austria, (2001) |
| [24] | A. Beloufa,, Z. Bensaad, B. Soudini, N. Sekkal, A. Bensaad, H. Abid, Int. J. Nanoelectronics and Materials 2 No. 1 (2009). 11-22 |
| [25] | M. Marques, L. K. Teles, L. M. R. Scolfaro, and J. R. Leite, Appl. Phys. Lett. 83 (2003) 890 |
| [26] | A. Munoz, K. Kunc, Physica B 185 (1993) 422 |
| [27] | S. Berrah, H. Abid and A. Boukortt, Phys. Scr. 74 (2006)104-107 |
| [28] | H. Yampashita, K. Fukui, S. Misawa, and S. Yodhida, J. Appl. Phys. 50, 896 (1979) |
| [29] | A. Rubio, J. L. Corkill, M.L. Cohen, E.L. Shirley, and S.G. Louie, Phys. Rev. B 48, 11 810 (1993) |
| [30] | J. Serrano, A Rubio, E. Hernandez, A. Munoz and A. Mujica, Phys. Rev. B 62 (2000) 16612 |
| [31] | I. Vurgaftmana and J. R. Meyer L. R. Ram-Mohan, J. Appl. Phys. 89 (2001) 5815 |
| [32] | K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 50 (1994) 1502 |
| [33] | V.I. Gavrilenko and R.Q. Wu, Phys. Rev. B 61 (2000) 2632 |
| [34] | C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46 (1992) 10 086 |
| [35] | M. Ueno, M. Yoshida, A. Onodera, O Shimomura and K. Takemura, Phys. Rev. B49 14(1994) |
| [36] | Properties of Group III Nitrides, edited by J.H. Edgar, Electronic Materials Information Service (EMIS) Datareviews Series (Institution of Electrical Engineers, London, (1994) |
| [37] | V.I. Gavrilenko and R.Q. Wu, Phys. Rev. B 61(2000) 2632 |
| [38] | C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46 (1992) 10 086 |
| [39] | P. Perlin, C. Jauberthie -Carillon, Lti, A.S. Miguel, I. Grzegory, A. Polian, High Press. Res. 7 (1991) 96 |
| [40] | M. Abu-Jafara, A.I. Al-Sharif, A. Qteish, Solid Stat. Comm. 116 (2000) 389 |
| [41] | I. Vurgaftmana and J. R. Meyer L. R. Ram-Mohan, J. Appl. Phys. 89 (2001) 5815 |
| [42] | Q. Xia, H. Xia, and A.L. Ruoff, J. Appl. Phys. 73, 8198 (1993) |
| [43] | A. Munoz, K. Kunc, Physica B 185 (1993) 422 |
| [44] | M.E. Sherwin and T.J. Drummond, J. Appl. Phys. 69 (1991) 8423 |
| [45] | A. Trampert, O. Brandt and K.H. ploog, in Crystal Structure of Group III Nitrides, Edited by J.I. Pankove and T.D. Moustakas, Semiconductors and Semimetals Vol. 50 (Academic, San Diogo (1998) |
| [46] | E. Rossencher, optoélectronique (1998) |
| [47] | H. Ohta, S. P. DenBaars, and S. Nakamura, J. Opt. Soc. Am. B 27(2010) B45-B49 |
| [48] | T. K. Sharma and E. Towe m Appl. Phys. Lett. 96 (2010) 191105 |
| [49] | W. G. Scheibenzuber, C. Hornuss and U. T. Schwarz, , Proc. of SPIE 7953, 79530K (2011) |