[1] | Schmidt K.-H., Jurado B., Review on the progress in nuclear fission - experimental methods and theoretical descriptions, Rep. Prog. Phys., 2018, v.81, Article No: 106301. |
[2] | Zilges A., Balabanski D.L., Isaak J., Pietrall N., Photonuclear reactions — From basic research to applications, Progress in Particle and Nuclear Physics, 2022, v.122, Article No: 103903. |
[3] | Stoulos S., Fragopoulou M., Vagena E., et al., Electron accelerator driven system for transmutation studies, J. Rad. Nucl. Chem., 2018, v. 318, p. 1209-1217. |
[4] | Delarue M., Simon E., Perot B., et al., New measurements of cumulative photofission yields of 239Pu, 235U and 238U with a 17.5 MeV Bremsstrahlung photon beam and progress toward actinide differentiation, Nucl. Inst. Meth. A., 2022, v. 1040, Article No: 167259. |
[5] | Chin K.W., Sagara H., Han C.Y., Application of photofission reaction to identify highly-enriched uranium by bremsstrahlung photons, Annals of Nuclear Energy, 2021, v.158, Article No: 108295. |
[6] | Naik H., Suryanarayana SV, Jagadeesan KS, et al., An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ,f) and 100Mo(γ,n) reactions, J Rad Nucl Chem., 2013, v.295, p. 807-816. |
[7] | Rudycheva V.G., Azarenkova N.A., Girkaa I.A., Rudycheva Y.V., Bremsstrahlung generation by 7.5 MeV electrons in converters made of different materials., East Eur. J. Phys., 2021, v.3, p. 91-96. |
[8] | Sahoo G.S., Tripathy S.P., Kulkarni M.S., Simulation study on radiation fields around targets to apply CR-39 for photo-neutron measurement in electron accelerator near the threshold energy, Applied Radiation and Isotopes, 2022, v.181, Article No: 110080. |
[9] | Lisovska V.V., Malykhina T.V., Computer simulation of the angular distribution of electrons and bremsstrahlung photons in tantalum converter., East Eur. J.Phys., 2020, v.2, p. 89-93. |
[10] | Feizi H., Ranjbar A.H., Design and parameter optimization of a small-scale electron-based ADS for radioactive waste trans-mutation, Eur. Phys. J. Plus, 2015, v.130, Article No: 99. |
[11] | Liu B., Zhang X., Liu F., et al., The electron accelerator driven sub-critical system, Nuclear Engineering and Design, 2022, v.386, Article No: 111567. |
[12] | ESTAR Database. https://physics.nist.gov/PhysRefData/ Star/Text/ESTAR.html. |
[13] | Pylypchynets I.V., Parlag O.O., Masluyk V.T., et al. Double-layer targets for forming the beams of the high-energy photons on the electron accelerator of the M-30 microtron. Uzhhorod University Scientific Herald. Series Physics, 2019, v.45, p. 50-60. (In Ukrainian). |
[14] | Anam S., Soejoko D.S., Haryanto F., et al., Electron contamination for 6 MV photon beams from an Elekta linac: Monte Carlo simulation., Journal of Physics and Its Applications, 2020, v.2, p. 97-101. |
[15] | Pomatsalyuk R.I., Shevchenko V.A., Titov D.T., et al., Formation and monitoring of secondary X-ray radiation during product processing with electron beam, Problems of Atomic Science and Technology, 2021, v.136, p. 201-205. |
[16] | Didi A., Dadouch A., El Bekkouri H., Bencheikh M., Monte Carlo transport code use for optimization of neutron flux produced with 10–18 MeV electron beam energy, Int. J. Nuclear Energy Science and Technology, 2018, v.12, p. 313-323. |
[17] | Banaee N., Goodarzi K., Nedaie HA, Neutron contamination in radiotherapy processes: a review study, Journal of Radiation Research, 2021, v.62, p. 947-954. |
[18] | Experimental Nuclear Reaction Data (EXFOR). Database Version of 2023-01-20. https://www-nds.iaea.org/exfor/ |
[19] | Huang W.L., Li Q.F., Lin Y.Z., Calculation of photoneutrons produced in the targets of electron linear accelerators for radiography and radiotherapy applications, Nuclear Instruments and Methods, B, 2005, v.229, p. 339-347. |
[20] | Semisalov I., Skakun Ye., Kasilov V., Popov V., Activation technique of astrophysical photonuclear reaction rate measurements using bremsstrahlung, Problems of Atomic Science and Technology, 2014, v.93, Is. 5, p. 102-110. |
[21] | Deiev O.S., Timchenko I.S., Olejnik S.M., et al., Photonuclear reactions cross-sections at energies up to 100 MeV for different experimental setups, Problems of Atomic Science and Technology, 2022, v.141, Is. 5, p. 11-18. |
[22] | Parlag O.O., Masluyk V.T., Dovbnja A.M., et al., Application of boron carbide B4C for cleaning beams of bremsstrahlung radiation of electronic accelerators. Utility model patent No. 96384. Bulletin no. 3. February 10, 2015. (In Ukrainian) https://uapatents.com/7-96384-zastosuvannya-karbidu-boru-v4s-dlya-ochishhennya-puchkiv-galmivnogo-viprominyuvannya-elektronnikh-priskoryuvachiv.html. |
[23] | Oleinikov E., Pylypchinets I., Parlag O., Computer simulation of absorption characteristics of B4C to the components of the bremsstrahlung spectrum of the M-30 microtron, Book of abstracts of the International Conference of Young Scientists and Post-Graduate Students, Uzhhorod, 2023, p. 21-22. (In Ukrainian) Available from http://www.iep.org.ua/content/conferenc/iep_2023/files/Book_of_abstracts_iep2023.pdf. |
[24] | Khabaz R., Effect of each component of a LINAC therapy head on neutron and photon spectra, Applied Radiation and Isotopes, 2018, v.139, p. 40-45. |
[25] | Yania S., Budiansah I., Rhanic M.F., Haryanto F., Monte Carlo model and output factors of Elekta infinity TM 6 and 10 MV photon beam, Reports of Practical Oncology and Radiotherapy, 2020, v.25, p. 470-478. |
[26] | Silvaa V.M., Cardoso D.O., Vellozo S.O., Experimental apparatus for measurement of photoneutrons from linear accelerator with energy of 16 MeV, Braz. J. Rad. Sci., 2021, v.9, p. 1-18. |
[27] | Meert C.A., Panter A.P., Jinia A.J., et al. High-fidelity photoneutron detection via neutron activation analysis, Nuclear Inst. And Methods in Physics Research A, 2022, v.1040, Article No: 167116. |
[28] | Haysak I.I., Takhtasiev O.V., Khushvaktov J., et al., Monte Carlo simulation of bremsstrahlung spectra for low energy electron accelerators, IEEE Xplore, 2020, Article No: 20178986. |
[29] | Meleshenkovskii I., Ogawa T., Sari A., et al., Optimization of a 9 MeV electron accelerator bremsstrahlung flux for photofission-based assay techniques using PHITS and MCNP6 Monte Carlo codes, Nuclear Instruments and Methods in Physics Research B, 2020, v. 483, p. 5-14. |
[30] | GEANT4 10.7 (December 4, 2020). https://geant4.web.cern.ch/support/download. |
[31] | Oleinikov E, Pylypchinets I., Simulation of bremsstrahlung spectra for the m-30 microtron using the GEANT4 toolkit, Book of abstracts of the XXVII Annual Scientific Conference of the Institute of Nuclear Research of the NAS of Ukraine, Kyiv, 2021, p.134-135 (in Ukrainian) http://www.kinr.kiev.ua/kinr-2021/Book_of_Abstracts_2021.pdf. |
[32] | Romanyuk M.I., Gaynish J.J., Turhovsky O.M., et al., Methods of formation and control of radiation fields of M-30 microtron, Journal of Physical Studies, 2022, v.26, Article No: 1201. |
[33] | Romanyuk M.I., Hainysh J.J., Plakosh Y., et al., Microtron M-30 for radiation experiments: formation and control of irradiation fields, Problems of Atomic Science and Technology, 2022, v.139, p. 137-143. |
[34] | Evaluated Nuclear Data File (ENDF). Database Version of 2022-04-22. https://www-nds.iaea.org/exfor/endf.htm. |