[1] | Simulik, V., 2005, What is the electron?, Apeiron, Montreal, Quebec H2W 2B2 Canada. |
[2] | Merali, Z., 2012, Not-quite-so elementary, my dear electron, Nature, 10471. |
[3] | Kugel', K. I. and Khomskiĭ, D. I., 1982, The Jahn-Teller effect and magnetism: transition metal compounds, Sov. Phys. Usp, 25, 231–256. |
[4] | Pen, H. F., van den Brink, J., Khomskii, D. I. and Sawatzky, G. A., 1997, Orbital Ordering in a Two-Dimensional Triangular Lattice, Phys. Rev. Lett., 78, 1323–1326. |
[5] | van den Brink, J., Stekelenburg, W., Khomskii, D. I., Sawatzky, G. A. and Kugel, K. I., 1998, Elementary excitations in the coupled spin-orbital model, Phys. Rev. B, 58, 10276–10282. |
[6] | Kim, C., Matsuura, A. Y., Shen, Z., Motoyama, N., Eisaki, H., Uchida, S., Tohyama, T. and Maekawa, S., 1996, Observation of Spin-Charge Separation in One-Dimensional SrCuO2, Phys. Rev. Lett., 77, 4054–4057. |
[7] | Jompol, Y., Ford, C. J. B., Griffiths, J. P., Farrer, I., Jones, G. A. C., Anderson, D., Ritchie, D. A., Silk, T. W. and Schofield, A. J., 2009, Probing spin-charge separation in a Tomonaga-Luttinger liquid., Science, New York, N.Y., 325, 597–601. |
[8] | Schlappa, J., Wohlfeld, K., Zhou, K. J., Mourigal, M., Haverkort, M. W., Strocov, V. N., Hozoi, L., Monney, C., Nishimoto, S. and Singh, S. et al., 2012, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3, Nature 485, 82–85. |
[9] | Ho, T.-L., 2020, Imaging the Holon string of the Hubbard model, Proceedings of the National Academy of Sciences of the United States of America, 117, 26141–26144. |
[10] | Mai, P., Karakuzu, S., Balduzzi, G., Johnston, S. and Maier, T. A., 2022, Intertwined spin, charge, and pair correlations in the two-dimensional Hubbard model in the thermodynamic limit, Proceedings of the National Academy of Sciences of the United States of America, 119 (7), e2112806119. |
[11] | Tsyplyatyev, O., Schofield, A. J., Jin, Y., Moreno, M., Tan, W. K., Anirban, A. S., Ford, C. J. B., Griffiths, J. P., Farrer, I. and Jones, G. A. C. et al., 2016, Nature of the many-body excitations in a quantum wire: Theory and experiment, Phys. Rev., B 93, 075147. |
[12] | Wu, L. S., Gannon, W. J., Zaliznyak, I. A., Tsvelik, A. M., Brockmann, M., Caux, J.-S., Kim, M. S., Qiu, Y., Copley, J. R. D. and Ehlers, G. et al., 2016, Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb₂Pt₂Pb., Science, New York, N.Y., 352, 1206–1210. |
[13] | Wilczek, F., 2013, Physics: The enigmatic electron, Nature, 498, 31–32. |
[14] | Millikan., R. A., 1913, On the Elementary Electrical Charge and the Avogadro Constant, Phys. Rev., 2, 109–143. |
[15] | Laughlin, R. B., 1983, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett., 50, 1395–1398. |
[16] | Tsui, D. C., Stormer, H. L. and Gossard, A. C., 1982, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett., 48, 1559–1562. |
[17] | de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G. and Mahalu, D., 1998, Direct observation of a fractional charge, Physica B: Condensed Matter, 251, 395–400. |
[18] | Reznikov, M., Picciotto, R. de, Griffiths, T. G., Heiblum, M. and Umansky, V., 1999, Observation of quasiparticles with one-fifth of an electron's charge, Nature, 399, 238–241. |
[19] | Sakharov, A. D., 1991, Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Usp. 34, 394. |
[20] | Consoli, M., 2002, A weak, attractive, long-range force in Higgs condensates, Physics Letters B, 541, 307–313. |
[21] | Dubrovskii, V. A., 1992, Elastic model of the physical vacuum, Mechanics of Solids, 26, 60–71. |
[22] | Liberati, S. and Maccione, L., 2014, Astrophysical constraints on Planck scale dissipative phenomena, Phys. Rev. Lett., 112, 151301. |
[23] | Zloshchastiev, K. G., 2011, Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory, Acta Phys. Pol. B, 42, 261. |
[24] | Puthoff, H. E., 2010, Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Engineering, Jour. Brit. Int. Soc., 63, 82-89. |
[25] | Tangour, B., 2005, Hidden phenomena and student incomprehension f Science fundamental laws, Satellite symposium of IUPAC 40th Congress, Physical Chemistry: Education and Challenges. |
[26] | Schoeffel L., 2008, Le proton : un cœur dur sous une peau douce, https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=2355. |
[27] | Wood, C., 2022, Inside the Proton the ‘Most Complicated Thing You Could Possibly Imagine, Quanta Magazine 414. |
[28] | Li, R., Sparveris, N., Atac, H., Jones, M. K., Paolone, M., Akbar, Z., Gayoso, C. A., Berdnikov, V., Biswas, D. and Boer, M. et al., 2022, Measured proton electromagnetic structure deviates from theoretical predictions, Nature, 611, 265–270. |
[29] | Butto, N., 2021, A New Theory for the Essence and Nature of Electron Charge, JHEPGC, 07, 1190–1201. |
[30] | Pilkuhn, H. M., 1979, The Particle Zoo. In Relativistic Particle Physics, Pilkuhn, H. M., ed., 136–208. |