[1] | K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C, 83:031301, Mar 2011. |
[2] | I. Tews, T. Kru¨ger, K. Hebeler, and A. Schwenk. Neutron matter at next-to-next-to-next- to-leading order in chiral effective field theory. Phys. Rev. Lett., 110:032504, Jan 2013. |
[3] | Jeremy W. Holt, Norbert Kaiser, and Wolfram Weise. Nuclear chiral dynamics and ther- modynamics. Progress in Particle and Nuclear Physics, 73:35–83, 2013. |
[4] | Corbinian Wellenhofer, Jeremy W. Holt, and Norbert Kaiser. Thermodynamics of isospin-asymmetric nuclear matter from chiral effective field theory. Phys. Rev. C, 92:015801, Jul 2015. |
[5] | C. Drischler, K. Hebeler, and A. Schwenk. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett., 122:042501, Jan 2019. |
[6] | B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa. Quantum monte carlo calculations of A ≤ 6 nuclei. Phys. Rev. Lett., 74:4396–4399, May 1995. |
[7] | K.E. Schmidt and S. Fantoni. A quantum monte carlo method for nucleon systems. Physics Letters B, 446(2): 99–103, 1999. |
[8] | Steven C. Pieper and R. B. Wiringa. Quantum monte carlo calculations of light nuclei. Annual Review of Nuclear and Particle Science, 51(1):53–90, 2001. |
[9] | J. Carlson, J. Morales, V. R. Pandharipande, and D. G. Ravenhall. Quantum monte carlo calculations of neutron matter. Phys. Rev. C, 68:025802, Aug 2003. |
[10] | Alexandros Gezerlis and J. Carlson. Low-density neutron matter. Phys. Rev. C, 81:025803, Feb 2010. |
[11] | V. R. Pandharipande and R. B. Wiringa. Variations on a theme of nuclear matter. Rev. Mod. Phys., 51:821–861, Oct 1979. |
[12] | F. Arias de Saavedra, C. Bisconti, G. Co’, and A. Fabrocini. Renormalized fermi hyper- netted chain approach in medium–heavy nuclei. Physics Reports, 450(1):1–95, 2007. |
[13] | K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud. Two-body forces and nuclear saturation. i. central forces. Phys. Rev., 95:217–228, Jul 1954. |
[14] | K. A. Brueckner. Many-body problem for strongly interacting particles. ii. linked cluster expansion. Phys. Rev., 100:36–45, Oct 1955. |
[15] | J. Goldstone. Derivation of the Brueckner Many-Body Theory. Proc. Roy. Soc. Lond. A, 239:267–279, 1957. |
[16] | H. A. Bethe, B. H. Brandow, and A. G. Petschek. Reference spectrum method for nuclear matter. Phys. Rev., 129:225–264, Jan 1963. |
[17] | E. Schiller, H. Müther, and P. Czerski. Pauli exclusion operator and binding energy of nuclear matter. Phys. Rev. C, 59:2934–2936, May 1999. |
[18] | K. Suzuki, R. Okamoto, M. Kohno, and S. Nagata. Exact treatment of the pauli exclusion operator in nuclear matter calculation. Nuclear Physics A, 665(1):92–104, 2000. |
[19] | F. Sammarruca, X. Meng, and E. J. Stephenson. Exact treatment of the pauli exclusion operator in nuclear matter. Phys. Rev. C, 62:014614, Jun 2000. |
[20] | K. A. Brueckner and J. L. Gammel. Properties of nuclear matter. Phys. Rev., 109:1023– 1039, Feb 1958. |
[21] | Michael I. Haftel and Frank Tabakin. Nuclear saturation and the smoothness of nucleon-nucleon potentials. Nuclear Physics A, 158(1):1 – 42, 1970. |
[22] | Arianna Carbone, Artur Polls, and Arnau Rios. Symmetric nuclear matter with chiral three-nucleon forces in the self-consistent green’s functions approach. Phys. Rev. C, 88:044302, Oct 2013. |
[23] | H. Kümmel, K.H. Lührmann, and J.G. Zabolitzky. Many-fermion theory in exps- (or coupled cluster) form. Physics Reports, 36(1):1 – 63, 1978. |
[24] | J.P Jeukenne, A Lejeune, and C Mahaux. Many-body theory of nuclear matter. Physics Reports, 25(2):83–174, 1976. |
[25] | R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C, 51:38–51, Jan 1995. |
[26] | H Müther and A Polls. Two-body correlations in nuclear systems. Progress in Particle and Nuclear Physics, 45(1): 243 – 334, 2000. |
[27] | Kh.S.A. Hassaneen, H.M. Abo-Elsebaa, E.A. Sultan, and H.M.M. Mansour. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon–nucleon potentials. Annals of Physics, 326(3): 566 – 577, 2011. |
[28] | B. D. Day. Nuclear saturation from two-nucleon potentials. Phys. Rev. Lett., 47:226–229, Jul 1981. |
[29] | Morten Hjorth-Jensen, Thomas T.S. Kuo, and Eivind Osnes. Realistic effective interactions for nuclear systems. Physics Reports, 261(3):125–270, 1995. |
[30] | F. Coester, S. Cohen, B. Day, and C. M. Vincent. Variation in nuclear-matter binding energies with phase-shift-equivalent two-body potentials. Phys. Rev. C, 1:769–776, Mar 1970. |
[31] | G H Bordbar and M Modarres. LOCV calculation of nuclear matter with phenomenological two-nucleon interaction operators. Journal of Physics G: Nuclear and Particle Physics, 23(11): 1631–1646, nov 1997. |
[32] | Z. H. Li, U. Lombardo, H.-J. Schulze, W. Zuo, L. W. Chen, and H. R. Ma. Nuclear matter saturation point and symmetry energy with modern nucleon-nucleon potentials. Phys. Rev. C, 74:047304, Oct 2006. |
[33] | S. Heidari, S. Zaryouni, H. R. Moshfegh, and S. Goudarzi. Role of relativistic effects and three-body forces in nuclear matter properties. Phys. Rev. C, 99:024307, Feb 2019. |
[34] | R. B. Wiringa, V. Fiks, and A. Fabrocini. Equation of state for dense nucleon matter. Phys. Rev. C, 38:1010–1037, Aug 1988. |
[35] | E.N.E. van Dalen, C. Fuchs, and Amand Faessler. The relativistic dirac–brueckner approach to asymmetric nuclear matter. Nuclear Physics A, 744:227–248, Nov 2004. |
[36] | Tetsuya Katayama and Koichi Saito. Properties of dense, asymmetric nuclear matter in dirac-brueckner-hartree-fock approach. Physical Review C, 88(3): 035805, 2013. |
[37] | Masatoshi Takano. Variational method for infinite nuclear matter with the paris potential. Progress of Theoretical Physics, 104(1): 185–202, 2000. |
[38] | Syed Rafi, Manjari Sharma, Dipti Pachouri, W Haider, and YK Gambhir. Equation of state and the nucleon optical potential with three-body forces. Physical Review C, 87(1): 014003, 2013. |
[39] | V. Somà and P. Bożek. In-medium t matrix for nuclear matter with three-body forces: Binding energy and single-particle properties. Phys. Rev. C, 78: 054003, Nov 2008. |
[40] | S. Goudarzi and H. R. Moshfegh. Effects of three-body forces on the maximum mass of neutron stars in the lowest-order constrained variational formalism. Phys. Rev. C, 91:054320, May 2015. |
[41] | Isaac Vidaña, Constan ça Providência, Artur Polls, and Arnau Rios. Density dependence of the nuclear symmetry energy: A microscopic perspective. Phys. Rev. C, 80:045806, Oct 2009. |
[42] | A. Akmal, V. R. Pandharipande, and D. G. Ravenhall. Equation of state of nucleon matter and neutron star structure. Phys. Rev. C, 58:1804–1828, Sep 1998. |
[43] | E. Khan and J. Margueron. Determination of the density dependence of the nuclear incompressibility. Phys. Rev. C, 88:034319, Sep 2013. |