[1] | A. K. T. Assis, Deriving Gravitation from Electromagnetism, Can. J. Phys. 70, 330 - 340 (1992). |
[2] | M. A. El-Lakany, Unification of Gravity and Electromagnetism, Journal of Physical Science and Application 7 3 15-24 (2017). |
[3] | M. Faraday, On the Possible Relation of Gravity to Electricity, Philosophical Transactions, 141, pp. 1-6. (1851). |
[4] | D. Gross, Einstein and the Search for Unification, Current Science 89, No. 12 (2005). |
[5] | H. Weyl, Electricity and Gravitation, Nature 106, 800–802 (1921). |
[6] | M. F. Spears, An Electrostatic Solution for the Gravity Force and the Value of G, Galilean Electrodynamics, 21, No. 2, pp. 23-32 (2010). |
[7] | K. O. Greulich, A Surprisingly Close Relationship between Gravitation and Electrostatic Interactions, Fritz Lipmann Institute, Beutenbergstr. 11 D 07745 Jena, http://www.fli-leibniz.de/www_kog/ (accessed 28 April 2018). |
[8] | E. G. Haug, Unification of Gravity and Electromagnetism, Gravity Electro Magnetism – A Probability Interpretation of Gravity, Norwegian University of Life Science (2016). |
[9] | H. Aspden, Can Gravity Be an Electrostatic Force? Aspden Research Papers, No. 3, (2005). |
[10] | A.K.T. Assis, Advanced Electromagnetism – Foundations, Theory and Application, World Scientific, Singapore, pp. 314-331 (1995). |
[11] | A.K.T. Assis, Deriving Gravitation from Electromagnetism, Can. J. Phys. 70, 330 - 340 (1992). |
[12] | R. Feynman, The Character of Physical Laws, The MIT Press, pp. 30-31(1967). |
[13] | D.H.D. Roller, The Development of the Concept of Electric Charge: Electricity from the Greeks to Coulomb, Cambridge, MA: Harvard University Press. p. 1 (1954). |
[14] | J. N. Mahdi, On the Nature of Electric Charge, Int. J. Phys. Sci. 9(4), pp. 54-60, (2014). |
[15] | V. A. Etkin, Modified Coulomb Law, World Scientific News 87 163-174, (2017). |
[16] | T. Zhang, Electric Charge as a Form of Imaginary Energy, Progress in Physics, 2, pp. 79-83 (2008). |
[17] | L.G. Kreidik and G.P. Shpenkov, Atomic Structure of Matter-Space, Alternative Picture of the World, 1-3, Bydgoszcz, (1996). |
[18] | R. A. Millikan, On the Elementary Electrical Charge and the Avogadro Constant, Phys Rev.2.109 (1913). |
[19] | C. F. C. DuFay, Two Kinds of Electrical Fluid: Vitreous and Resinous – Archived 2009-05-26 at the Wayback Machine. sparkmuseum.com (1733). |
[20] | L. J. Wang, Unification of Gravitational and Electromagnetic Forces, J Phys Chem Biophys, (2018). |
[21] | F. Wilczek, Unification of Force and Substance. Phil. Trans. R. Soc. A 374: 20150257 (2016). |
[22] | E.M. Purcell and D. J. Morin, Electricity and Magnetism (3rd Ed.) Harvard University, Cambridge University Press, New York pp. 5-7 (2013). |
[23] | F. Winterberg, Teichmüller Space Interpretation of Quantum Mechanics, Gauss Press, Reno, Nevada, Zf. Naturforsch 58a, 231 (2003). |
[24] | G. N. Golden, Avoiding Negative Probabilities in Quantum Mechanics, Journal of Modern Physics, 4, 1066-1074 (2013). |
[25] | G. B. Stephen, and S. Ariel, The Making of Twentieth Century Science, How Theories Became Knowledge, P. 271, Oxford University Press (2015). |
[26] | J. M. Luttinger, On Negative Mass in the Theory of Gravitation, Gravity Research Foundation, (1951). |
[27] | H. Bondi, Negative Mass in General Relativity, Reviews of Modern Physics. 29 (3): 423–428 (1957). |
[28] | R. M. Price, Negative Mass Can be Positively Amusing, Am. J. Phys. 61(3): 216 (1993). |
[29] | T. Pashby, Dirac’s Prediction of the Positron: A Case Study for the Current Realism Debate, Perspectives on Science, 20, no. 4 p 440 (2012). |
[30] | C. Anderson, The Positive Electron, Phys. Rev., 43, no. 6, pp. 491–494, Mar. 1933. |
[31] | O. Igonkina, Inaugural Speech, Radboud University Facility Services, p. 9 (2015). |
[32] | T. Zhang, Electric Charge as a Form of Imaginary Energy, Progress in Physics, 2 pp 79-83 (2008). |
[33] | F. Soddy, The Complexity of Chemical Elements, The Scientific Monthly, 5, No. 5, pp. 451-462 (1917). |
[34] | C.S. Unnikrishnan, and G. T. Gillies, The Electrical Neutrality of Atoms and of Bulk Matter, Metrologia, 41(5): S125 (2004). |
[35] | I. Curie, and F. Joliot, β-Emission of Positive Electrons, C. R. Acad. Sci. 198, 254 (1934). |
[36] | D. W. Engelkemeir, K. F. Flynn, and L. E., Glendenin, Positron Emission in the Decay of K40, Phys. Rev. 126 (5), 1818 (1962). |
[37] | C.D. Simak (ed.), From Atom to Infinity, Readings in Modern Science, p.282, Minneapolis Star and Tribune Company, NY, (1964). |
[38] | P. Blackett, Nobel Lectures, Physics 1942-1962, Elsevier Publishing Company, Amsterdam (1964). |
[39] | J. H. Hubbell, Electron Positron Pair Production by Photons: A historical overview, Radiation Physics and Chemistry. 75 (6): 614–623 (2006). |
[40] | S. P. Parker (ed.), Elementary Particles, McGraw-Hill Encyclopaedia of Science and Technology,' Fifth Edition, 5, McGraw-Hill Book Co., New York (1982). |
[41] | J. Konya, and N. M. Nagy, Nuclear and Radio-chemistry, Elsevier, pp. 74–75, (2012). |
[42] | S. Mertens, Direct Neutrino Mass Experiments, Journal of Physics: Conference Series. 718 (2): 022013 (2016). |
[43] | P. G. Roll, R. Krotkove, and R. H. Dicke, The Equivalence of Inertial and Passive Gravitational Mass, Annals of Physics, 26, 442-517 (1964). |
[44] | S. Carlip, Kinetic Energy and the Equivalence Principle, Am. J. Phys. 66, 409 (1998). |
[45] | P.J. Mohr, et al. CODATA Recommended Values of the Fundamental Physical Constants, ARev. Mod. Phys, 84 1527-1605 (2012). |