[1] | W. Ulmer, ‘’Quantum theory of friction and electric resistance of circuits and applications to radiation physics,’’ Intl. Journal of Innovation in Science and Mathematics, 3, 2347 – 9051, 2015, Issue 3, ISSN (Online). |
[2] | R. van Zon, S. Ciliberto, and E. Cohen, ‘’Power and Heat Fluctuation Theorems for Electric Circuits,’’ Physical Review Letters 92, 13, 2004, 130601. doi: 10.1103/PhysRevLett.92.130601. |
[3] | H. Grabert, ‘’Projection Operator Techniques in Nonequilibrium Statistical Mechanics,’’ Springer Tracts in Modern Physics 95, Berlin: Springer-Press, ISBN 3-540-11635-4 (1982). |
[4] | M. H. Devoret, and J. M. Martinis, ‘’Implementing Qubits with Superconducting Integrated Circuits,’’ Quantum Information Processing 3, 1, pp. 1 - 20, 2004. |
[5] | W. Y. Chen, ‘’Home Networking Basics,’’ Prentice Hall, 2004, ISBN 0-13-016511-5. |
[6] | R. Friedrich, J. Peinke, and C. Renner, ‘’How to Quantify Deterministic and Random Influences on the Statistics of the Foreign Exchange Market,’’ Phys. Rev. Letter 84, 5224 – 5227, 2000. |
[7] | W. Y.Chen, ‘’Linear Networks and Systems (Book style) ‘’, Belmont, CA: Wadsworth, 1993, pp. 123–133. |
[8] | H. Poor, ‘’An Introduction to Signal Detection and Estimation’’, New York: Springer-Press (1985) Chapter 4. |
[9] | J. Jones, ‘’Networks,’’ 2nd ed., 1991, [Online]. Available: http://www.atm.com. |
[10] | W. Ulmer, ‘'Quantum Theory of coupled electromagnetic Circuits -Extensions and Transitions to the Continuum and Applications to Problems with Spin and Nuclear Physics’’, International J. of Innovation in Science and Mathematics, 4, 3, Issue 6, ISSN (Online), 2347–9051 2015. |
[11] | H. Hartmann, und W. Stürmer, ‘Zur Darstellung molekularer Schwingungen mechanische und elektrische Oszillatoren‘‘, Z. Naturforschung 36 a, 99 – 100, 1949. |
[12] | D. Schuch, K. M. Chung, and H. Hartmann, ‘’Non-Linear Schrödinger-type field equation for the description of dissipative Systems. 1. Derivation of the nonlinear field equation and one-dimensional example,’’ J. Math. Phys. 24, 1652 - 1660, 1983. |
[13] | D. Schuch, K. M. Chung, and H. Hartmann, ‘’Nonlinear Schrödinger-type field equation for the description of dissipative systems 3. Frictionally damped free motion as an example for an aperiodic motion,’’ J. Math. Phys. 25, 3086 – 3092, 1984. |
[14] | D. Schuch, ‘’Non-unitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems,’’ Phys. Rev. 55A, 935, DOI: http://dx.doi.org/10.1103/PhysRevA.55, 93, 1997. |
[15] | R. Tsekov, ‘’Nonlinear friction in quantum mechanics,’’ Ann. Univ. Sofia, Faculty Physics 105, 14 - 21, 2012 [arXiv 1003.0304]. |
[16] | W. Ulmer, ‘’On the representation of Atoms and Molecules as Self-interacting Field with Internal Structure,’’ Theoretica Chimica Acta 55, 179 – 205, 1980. |
[17] | W. Ulmer, and G. Cornélissen, ‘’Coupled Electromagnetic Circuits and Their Connection to Quantum-Mechanical Resonance Interactions and Biorhythms,’’ Open Journal of Biophysics, 3, 253 – 274, 2013, http://dx.doi.org/10.4236/ojbiphy.2013.3403.1. |
[18] | W. Ulmer, and E. Matsinov, ‘’Theoretical methods for the calculation of Bragg curves and 3D distributions of proton beams,’’ European J. Phys. ST 190, 1 – 81, 2010, DOI:10.1140/EJPST/e2010-01335-7. |
[19] | W. Ulmer, ‘’A Solution Spectrum of the Nonlinear Schrödinger Equation,’’ Int. J. Theor. Phys. 27, 767 – 785, 1988. |
[20] | R. P. Feynman, and A. R. Hibbs, ‘’Quantum Mechanics and Path Integrals,’’ McGraw-Hill Book Company, 1965. |
[21] | R. P, Feynman, M. Kislinger, and F. Ravndal, ‘’A relativistic quark model with harmonic dynamics,’’ Phys. Rev. D3, 2706 – 2715, 1971. |
[22] | Z. K. Silagadze, ‘’Deconvolution of 3D Gaussian kernels,’’ Physics Letters A, 2019, https // doi.org/10.1016/j. physleta. 2019. 125874. |
[23] | B. Kostenko, and J. Pribis, ‘’On excited states of deuteron nucleu,’’. arXiv: 1503.04956v2 [nucl-th], 2015. |