Journal of Nuclear and Particle Physics
p-ISSN: 2167-6895 e-ISSN: 2167-6909
2014; 4(1): 25-30
doi:10.5923/j.jnpp.20140401.04
1Department of Appleid Sciences, RBCEBTW, Mohali-140 104, India
2King's Group of Institutions, Barnala-148 101, India
Correspondence to: M. S. Mehta, King's Group of Institutions, Barnala-148 101, India.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The magic number and halo and /or skin (neutron) of the nuclei at or near neutron drip-line are studied using axially deformed relativistic mean field model with NL3 and NL3* parameter sets. The density profiles of some of selected nuclei in the light mass region of nuclear landscape are plotted for the purpose. A considerable difference in the densities of neutron and proton can be seen easily in all the cases studied. Also, single particle energy levels show the visible shell gaps at N = 28 and 40 which corresponds the sudden decrease in the two neutron separation energy. The two results are consistent with each other, while the shell gaps corresponding to the numbers N = 32 and 34 seem not to be supporting the magicity at these numbers in the isotopes considered here.
Keywords: Relativistic Mean Field, Shell Structure, Magic Number, Halo, Skin, Drip-line, Quadrupole Deformation
Cite this paper: Harvinder Kaur, M. S. Mehta, Nuclei at or Near Drip-Lines, Journal of Nuclear and Particle Physics, Vol. 4 No. 1, 2014, pp. 25-30. doi: 10.5923/j.jnpp.20140401.04.
(1) |
(2) |
(3) |
(4) |
Figure 1. The density distribution of 50-56Ca nuclei with NL3 parameter set |
Figure 2. The two neutron separation energy for Si and Ca-isotopes using NL3 parameter set |
Figure 3. The single particle energy levels of neutrons and protons for 52,60Ca nuclei using NL3 parameter |
Figure 4. The density distribution of 22C, 42Mg and 48Si nuclei with NL3 parameter set |
[1] | I. Tanihata et al., Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region, Phys. Rev. Lett. 55, 2676 (1985). |
[2] | J. S. Al-Khalili, An Introduction to Halo Nuclei, Lect. Notes Phys. 651,77 (2004). |
[3] | J. Meng and P. Ring, Relativistic Hartree-Bogoliubov Description of the Neutron Halo in 11Li, Phys. Rev. Lett. 77, 3963 (1996); W. H. Long et al., Relativistic Hartree-Fock-Bogoliubov theory with density dependent meson-nucleon couplings, Phys. Rev. C 81, 024308 (2010). |
[4] | Y. K. Gambhir, P. Ring and A. Thimet, Relativistic Mean Field Theory for Finite Nuclei, Ann. Phys. 198, 132 (1990). |
[5] | Tanihata I. et al., Determination of the density distribution and the correlation of halo neutrons in 11Li, Phys. Lett., B 287, 307 (1992). |
[6] | K. Tanaka et al., Observation of a Large Reaction Cross Section in the Drip-Line Nucleus 22C, Phys. Rev. Lett., 104, 062701 (2010). |
[7] | L. Li et al., Halos in a deformed Relativistic Hartree-Bogoliubov Theory in Continuum, Phys. Rev. C 85, 024312 (2012). |
[8] | Zhou et al., Odd systems in deformed relativistic Hartree Bogoliubov Thery in Continuum, Phys. Rev. C 82, 011301R (2010). |
[9] | T. Nakamura et al., Experimental Program on Halo Nuclei with non-accelerated beams, Phys. Rev. Lett. 103, 262501 (2009). |
[10] | A. Di Pietro, et. al., Elastic Scattering and Reaction Mechanisms of the Halo Nucleus 11Be around the Coulomb Barrier, Phys. Rev. Lett. 105, 022701 (2010). |
[11] | I. Tanihata, J. Phys. G, Neutron halo nuclei, 22, 157 (1996); I. Tanihata et al., Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region, Phys. Rev. Lett. 55, 2676 (1985). |
[12] | K. Riisager, Nuclear halo states, Rev. Mod. Phys. 66, 1105 (1994); Tanihata I. et al., Revelation of thick neutron skins in nuclei, Phys. Lett. B 289, 261 (1992); Tanihata I., Prog. Part. Nucl. Phys. 35, 505 (1995). |
[13] | R. Machleidt, The meson theory of nuclear forces and nuclear structure, Adv. Nucl. Phys. 19, 189 (1989). |
[14] | S. K. Patra and C. R. Praharaj One neutron removal reaction using relativistic mean field densities, Phys. Rev. C 44, 2552 (1991). |
[15] | M. Del Estal, M. Centelles, X. Vi\~nas and Patra S. K., Versatility of field theory motivated nuclear effective Lagrangian approach, Phys. Rev. C 63, 024314 (2001). |
[16] | D. G. Madland and J. R. Nix, New model of the average neutron and proton pairing gaps, Nucl. Phys. A 476, 1 (1988). |
[17] | G. A. Lalazissis, J. Konig and P. Ring, Phys. Rev. C 55, 540 (1997). |
[18] | G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A. V. Afanasjev, and P. Ring, Phys. Lett. B 671, 36 (2009). |
[19] | Sorlin O. and Porquet M. -G., Nuclear magic numbers: new features far from stability, Prog. Part. Nucl. Phys. 61, 602 (2008); Sorlin O., et al., 68284040: Magicity versus Super fluidity, Phys. Rev. Lett. 88, 092501 (2002). |
[20] | R. Krücken, New magic numbers, arXiv:1006.2520 v1[phys.pop-ph], 2010. |
[21] | A. Ozawa, et al., New Magic Number, N = 16, near the Neutron Drip Line, Phys. Rev. Lett. 84 5493 (2000); R. Kanungo, I. Tanihata and A. Ozawa, Observation of new neutron and proton magic numbers, Phys. Lett. B 528, 58 (2002). |
[22] | R. Kanungo, I. Tanihata and A. Ozawa, Observation of new neutron and proton magic numbers, Phys. Lett. B 528 58 (2002); J. I. Prisciandaro et al., Observation of new neutron and proton magic numbers, Phys. Lett. B 510, 17 (2001). |
[23] | M. Honma, T. Otsuka, B. A. Brown, Mizusaki T., Effective interaction for pf-shell nuclei, Phys. Rev. C 65, 061301(R) (2002). |
[24] | E. K. Warburton, J. A. Becker, and B. A. Brown, Mass systematics for A=29–44 nuclei: The deformed A∼32 region, Phys. Rev. C 41}, 1147 (1990); A. Poves et al., Nucl. Phys. A 694, 157 (2001). |
[25] | T. T. S. Kuo, G. E. Brown, Nucl. Phys. A 114, 241 (1968). |
[26] | H. Nakada, One neutron removal reaction using relativistic mean field densities, arXiv:1003.572v2[nucl-ph], 2010. |