[1] | Shahrubudin, N.; Lee, T.; Ramlan, R. An overview on 3d printing technology: technological, materials, and applications. Procedia Manuf. 2019, 35, 1288, doi:10.1016/j.promfg.2019.06.089. |
[2] | Osinde, N.; Byiringiro, J.; Gichane, M.; Smajic, H. Process modelling of geothermal drilling system using digital twin for real-time monitoring and control. Designs 2019, 3, 11, doi:10.3390/designs3030045. |
[3] | Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 2020, 8, 21985, doi:10.1109/access.2020.2970143. |
[4] | Gichane, M.; Byiringiro, J.; Chesang, A.; Nyaga, P.; Langat, R.; Smajic, H.; Kiiru, C. Digital triplet approach for real-time monitoring and control of an elevator security system. Designs 2020, 4, 5, doi:10.3390/designs4020009. |
[5] | Subodh, K.; Ajit, C.; Anand, S.; Amit, G. A comparison of additive manufacturing technologies. IJIRST Int. J. Innov. Res. Sci. Technol. 2016 3. 151. |
[6] | O’Connell, J. FDM 3d printers explained: cartesian, delta, corexy, & more. Available online: https://all3dp.com/2/cartesian-3d-printer-delta-scara-belt-corexy-polar/ (accessed on 5 January 2021). |
[7] | Ahmed, W., Alabdouli, H., Alqaydi, H., Mansour, A., Khawaja, H. Open source 3d printer: a case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management. Dubai, UAE, March 2020; IEOM Society International. Retrieved from: http://www.ieomsociety.org/ieom2020/papers/865.pdf. |
[8] | Schmitt, B.; Zirbes, C.; Bonin, C.; Lohmann, D.; Lencina, D.; Netto, A. A comparative study of cartesian and delta 3d printers on producing pla parts. Mater. Res. 2017, 20. 883, doi:10.1590/1980-5373-mr-2016-1039. |
[9] | Gobbato, B. Setting up your own home 3d printing “plant”. 3D Print. Orthop. Surg. 2019, 205, doi:10.1016/b978-0-323-58118-9.00016-6. |
[10] | Gong, H.; Crater, C.; Ordonez, A.; Ward, C.; Waller, M.; Ginn, C. Material properties and shrinkage of 3d printing parts using ultrafuse stainless steel 316lx filament. MATEC Web Conf. 2018, 249, 1, doi:10.1051/matecconf/201824901001. |
[11] | Singh, R.; Kumar, R.; Farina, I.; Colangelo, F.; Leo, L.; Fraternali, F. Multi-material additive manufacturing of sustainable innovative materials and structures. Polymers 2019, 11, 11, doi:10.3390/polym11010062. |
[12] | RUSTIN takes production efficiencies to new heights with FDM additive manufacturing. Available online: https://www.stratasys.com/explore/case-study/rustin-uses-fdm-additive-manufacturing (accessed on 3 January 2021). |
[13] | Ramya, A.; Vanapalli, S. 3d printing technologies in various applications. Int. J. Mech. Eng. Technol. (IJMET) 2016, 7, 407–408. Available online: http://www.iaeme.com/MasterAdmin/uploadfolder/IJMET-07-03-036/IJMET-07-03-036.pdf (accessed on 3 January 2021). |
[14] | Mwema, F.; Akinlabi, E. Basics of fused deposition modelling (fdm). Fused Depos. Model. 2020, 10, doi:10.1007/978-3-030-48259-6-1. |
[15] | Lemu, H. Beyond rapid prototyping: study of prospects and challenges of 3d printing in functional part fabrication. In Proceedings of the 6th International Workshop of Advanced Manufacturing and Automation. Manchester, United Kingdom, November 2016; Atlantis Press pp. 142–143, doi:10.2991/iwama-16.2016.25. |
[16] | Cai, Y.; Starly, B.; Cohen, P.; Lee, Y. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manuf. 2017, 10, 1032, doi:10.1016/j.promfg.2017.07.094. |
[17] | Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 39, doi:10.1016/j.cirpj.2020.02.002. |
[18] | Bevilacqua, M.; Bottani, E.; Ciarapica, F.E.; Costantino, F.; Di Donato, L.; Ferraro, A.; Mazzuto, G.; Monteriù, A.; Nardini, G.; Ortenzi, M.; et al. Digital twin reference model development to prevent operators’ risk in process plants. Sustainability 2020, 12, 4–7, doi:10.3390/su12031088. |
[19] | Deloitte University Press. Industry 4.0 and the digital twin: manufacturing meets its match; Deloitte University Press. 2017; pp.13–14. Available online: http://33h.co/9ebqz (accessed on 8 September 2020). |
[20] | Smajic, H.; Stekolschik, A.; Byiringiro, J. Digital twins for online training of automation techniques. ICELW; International Conference On E-Learning in the Workplace: New York, NY, USA, 2020; p. 6. Available online: http://33h.co/9ebq6 (accessed on 3January 2021). |
[21] | Singh, S.; Shehab, E.; Higgins, N.; Fowler, K.; Tomiyama, T.; Fowler, C. Challenges of digital twin in high value manufacturing. SAE Tech. Pap. Ser. 2018, 4, doi:10.4271/2018-01-1928. |
[22] | Chhetri, S.; Faezi, S.; Canedo, A.; Faruque, M. Quilt: quality inference from living digital twins in iot-enabled manufacturing systems. In Proceedings of the International Conference on Internet of Things Design and Implementation. Montreal, Quebec, Canada, April 2019; Association for Computing Machinery, New York, NY, United States, p. 238, doi:10.1145/3302505.3310085. |
[23] | DebRoy, T.; Zhang, W.; Turner, J.; Babu, S. Building digital twins of 3d printing machines. Scr. Mater. 2017, 135, 123, doi:10.1016/j.scriptamat.2016.12.005. |
[24] | Mukherjee, T.; DebRoy, T. A digital twin for rapid qualification of 3d printed metallic components. Appl. Mater. Today 2019, 14, 63, doi:10.1016/j.apmt.2018.11.003. |
[25] | Kubiak, I.; Przybysz, A.; Sta´nczak, A. Usefulness of acoustic sounds from 3d printers in an eavesdropping process and reconstruction of printed shapes. Electronics 2020, 9, 10–11, doi:10.3390/electronics9020297. |
[26] | Li, S.; Freije, E.; Yearling, P. Monitoring 3d printer performance using internet of things (iot) application. In Proceedings of the 2017 ASEE Annual Conference & Exposition Proceedings. Colombus, Ohio, USA, June 2017; pp. 1–8, doi:10.18260/1-2–28686. |
[27] | Delli, U.; Chang, S. Automated process monitoring in 3d printing using supervised machine learning. Procedia Manuf. 2018, 26, 866, doi:10.1016/j.promfg.2018.07.111. |
[28] | Knapp, G.; Mukherjee, T.; Zuback, J.; Wei, H.; Palmer, T.; De A.; DebRoy, T. Building blocks for a digital twin of additive manufacturing. Acta Mater. 2017, 14–15, doi:10.1016/j.actamat.2017.06.039. |
[29] | Yang, Z.; Eddy, D.; Krishnamurty, S.; Grosse, I. Investigating grey-box modeling for predictive analytics in smart manufacturing. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, Ohio, USA, August 2017; 2017; pp. 1–10, doi:10.1115/DETC2017-67794. |
[30] | Mennenga, M.; Rogall, C.; Yang, C.; Wolper, J.; Herrmann, C.; Sebastian, T. Architecture and development approach for integrated cyber-physical production-service systems (CPPSS). Procedia CIRP 2020, 90, 745–746. |
[31] | Zhang, Li, Chen, X.; Zhou, W.; Cheng, T.; Chen, L.; Guo, Z.; Han, B.; Lu, L. Digital twins for additive manufacturing: a state-of-the-art Review. Appl. Sci. 2020, 10, 7, doi:10.3390/app10238350. |
[32] | Kondo, H. 3d print speed: the perfect settings for pla & more. Available online: https://all3dp.com/2/3d-printing-speedoptimal-settings/ (accessed on 5 January 2021). |
[33] | Pilch, Z.; Domin, J.; Szlapa, A. The impact of vibration of the 3d printer table on the quality of print. IEEE 2015, 6, doi:10.1109/wzee.2015.7394045. |
[34] | Ahmed, D.; Khalifa, O.; Jama, A. Video transmission over wireless networks review and recent advances. Int. J. Comput. Appl. Technol. Res. 2015, 4, 445, doi:10.7753/IJCATR0406.1005. |
[35] | Natarajan M. Multimedia and data transfer technology: the challenges and delivery. DESIDOC Bull. Inf. Technol. 2003, 23, 22, doi:10.14429/dbit.23.4.3604. |