[1] | U.S. Energy Information Administration. (2016) International energy outlook 2016. [Online]. Available:http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf. |
[2] | Archer, C.L., Jacobson, M.Z., 2005, Evaluation of global wind power, J. Geophys. Res. Atmos., 110 (D12), D12110. |
[3] | Energy Efficiency and Renewable, “20% wind energy by 2030: increasing wind energy’s contribution to U.S. electricity supply,” U.S. Department of Energy, Washington, DC, DOE/GO-102008-2567, 2008. |
[4] | N. Nanami, “Structural and damage assessment of multi-section modular hybrid composite wind turbine blade,” Ph.D dissertation, Texas A&M University, College Station, TX, 2014. |
[5] | N. Nanami, O.O. Ochoa, Vibration and Dynamic Response of Hybrid Wind Turbine Blades. D. Liu, Ed. Dynamic Effects in Composites Materials, Vol. 1, Lancaster, PA: DEStech Publications, 2012. |
[6] | Nanami, N., Ochoa, O.O., 2013, Bird impact study of a preloaded composite wind turbine blade, Proc. 19th International Conf. on Composite Materials, Montreal, Canada, 6415. |
[7] | D.S. Berry, D. Berg, “Blade system design studies phase II: final project report,” Sandia National Laboratories, Albuquerque, NM, SAND2008-4648, 2008. |
[8] | D. Somers, “The S816, S817, and S818 airfoils,” National Renewable Energy Laboratory, Golden, Co, NREL /SR-500-36333, 2004. |
[9] | Timmer, W.A., van Rooij, R., 2003, Summary of the Delft university wind turbine dedicated airfoils, J. Sol. Energ., 125 (4), 488-496. |
[10] | Fuglsang, P., Bak, C., 2004, Development of the Risø wind turbine airfoils, Wind Energy, 7 (2), 145-162. |
[11] | Thomsen, O.T., 2009, Sandwich materials for wind turbine blades - present and future, J. Sandw. Struct. Mater., 11 (1), 7-26. |
[12] | Todoroki, A., Kawakami, Y., 2008, Optimal design of wind turbine blade of CF/GF hybrid composites, Trans. JSCES, 2008 (2008), 20080012 [in Japanese]. |
[13] | D.A. Griffin, “Blade system design studies volume I: composite technologies for large wind turbine blades,” Sandia National Laboratories, Albuquerque, NM, SAND2002-1879, 2002. |
[14] | D.A. Griffin, “Blade system design studies volume II: preliminary blade designs and recommended test matrix,” Sandia National Laboratories, Albuquerque, NM, SAND2004-0073, 2004. |
[15] | Dahlroth, D., 1983, Load cases for medium-sized wind power plants, Proc. Structural Design Criteria for LS WECS, Greenford, UK, 121-193. |
[16] | Castelletti, L.M.L., Anghileri, M., 2003, Multiple birdstrike analysis - a survey of feasible techniques, Proc. the 30th European Rotorcraft Forum, Marseilles, France, 495-505. |
[17] | Heimbs, S., 2011, Computational methods for bird strike simulations: a review, Comput. Struct., 89 (23-24), 2093-2112. |
[18] | Heimbs, S., 2011, Bird strike simulations on composite aircraft structures, Proc. 2011 SIMULIA Customer Conf., Barcelona, Spain, 73-86. |
[19] | Shmotin, Y., Chupin, P., Gabov, D., Ryabov, А., Romanov, V., Kukanov, S., et al., 2009, Bird strike analysis of aircraft engine fan, Proc. the 7th European LS-DYNA Conf., Salzburg, Austria, H-I-03. |
[20] | McCallum, S., Constantinou, C., 2005, The influence of bird-shape in bird-strike analysis, Proc. the 5th European LS-DYNA Users Conf., Birmingham, UK, 2c-77. |
[21] | C. B. Hasager, A. Peña, T. Mikkelsen, M.S. Courtney, I. Antoniou, S.E. Gryning, et al., “12MW horns rev experiment,” Risø National Laboratory, Roskilde, Denmark, Riso-R-1506(EN), 2007. |
[22] | ABAQUS, Inc, ABAQUS Documentation Collection, Ver. 6.12, Pawtucket, RI: ABAQUS, Inc., 2012. |
[23] | Airoldi, A., Cacchione, B., 2006, Modelling of impact forces and pressures in Lagrangian bird strike analyses, Int. J. Impact Eng., 32 (10), 1651-1677. |
[24] | Johnson, A.F., Holzapfel, M., 2003, Modelling soft body impact on composite structures, Compos. Struct., 61 (1-2), 103-113. |
[25] | Hashin, Z., Rotem, A., 1973, A fatigue failure criterion for fiber reinforced materials, J. Compos. Mater., 7 (4), 448-464. |
[26] | Hashin, Z., 1980, Failure criteria for unidirectional fiber composites, J. Appl. Mech., 47 (2), 329-334. |
[27] | Lapczyk, I., Hurtado, J.A., 2007, Progressive damage modeling in fiber-reinforced materials, Compos. Part A, 38 (11), 2333-2341. |
[28] | Vural, M., Ravichandran, G., 2003, Microstructural aspects and modeling of failure in naturally occurring porous composites, Mech. Mater., 35 (3-6), 523-536. |
[29] | M.D. Daniel, O. Ishai, Engineering Mechanics of Composite Materials, New York, NY: Oxford University Press, 1994. |
[30] | Kyriazoglou, C., Guild, F.J., 2006, Finite element prediction of damping of composite GFRP and CFRP laminates: a hybrid formulation–vibration damping experiments and Rayleigh damping, Compos. Sci. Technol., 66 (3-4), 487-498. |
[31] | MatWeb. (2010) Greene tweed orthetek WF polyketone, continuous woven carbon fiber, Database of material properties. [Online]. Available: http://www.matweb.com/search/QuickText.aspx?SearchText=woven%20carbon. |
[32] | Laird, D.L., Montoya, F.C., Malcolm, D.J., 2005, Finite element modeling of wind turbine blades, Proc. AIAA/ASME Wind Energy Symposium, Reno, NV, 9-15. |
[33] | T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook, New York, NY: Wiley, 2011. |
[34] | E. Hau, Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd ed., New York, NY: Springer-Verlag, 2006. |
[35] | Benson, D.J., Okazawa, S., 2004, Contact in a multi-material Eulerian finite element formulation, Comput. Methods in Appl. Mech. Eng., 193 (39-41), 4277-4298. |