[1] | K. Ogawa, T. Asano, Theoretical Prediction of Residual Stress Induced by Shot Peening and Experimental Verification for Carburized Steel, Japan Society of Materials Science, 48 (1999) 1360-1366. |
[2] | T. Hong, J.Y. Ooi, B. Shaw, A numerical study of the residual stress pattern from single shot impacting on a metallic component, Advances in Engineering Software, 39 (2008) 743-756. |
[3] | M. Guagliano, Relating Almen intensity to residual stress induced by shot peening: a numerical approach, Journal of Materials Processing Technology, 110 (2001) 277-286. |
[4] | G.I. Mylonas, G. Labeas, Numerical modeling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction, Surface and Coatings Technology, 205 (2011) 4480-4494. |
[5] | B. Bhuvaraghan, S.M. Srinivasan, B. Maffeo, Numerical simulation of Almen strip response due to random impacts with strain-rate effects, International Journal of Mechanical Sciences, 53 (2011) 417-424. |
[6] | B. Yildirim, S. Muftu, A. Gouldstone, Modeling of high velocity impact of spherical particles, Wear, 270 (2011) 703-713. |
[7] | A. Gariepy, S. Larose, C. Perron, M. Levesque, Shot peening and peen forming finite element modeling – Towards a quantitative method, International Journal of Solids and Structures, 48 (2011) 2859-2877. |
[8] | H.Y. Miao, S. Larose, C. Perron, M. Levesque, On the potential applications of a 3D random finite element model for the simulation of shot peening, Advances in Engineering Software, 40 (2009) 1023-1038. |
[9] | T. Kim, J.H. Lee, H. Lee, S. Cheong, An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots, Materials and Design, 31 (2010) 50-59. |
[10] | H.Y. Miao, S. Larose, C. Perron, M. Levesque, An analytical approach to relate shot peening parameters to Almen intensity, Surface and Coatings Technology, 205 (2010) 2055-2066. |
[11] | G.H. Majzoobi, R. Azizi, A. Alavi Nia, A three-dimensional simulation of shot peening process using multiple shot impacts, Journal of Material Processing Technology, 164-165 (2005) 1226-1234. |
[12] | S.M. Hassani-Gangaraj, M. Guagliano, G.H. Farrahi, Finite element simulation of shot peening coverage with the special attention on surface nanocrystallization, Procedia Engineering, 10 (2011) 2464-2471. |
[13] | K. Ogawa; T. Asano; A. Saito; K. Kawamura; M. Ogino; H. Aihara: Measurement and Analysis of Shot Velocity in Pheumatic Shot Peening. Transactions of the Japan Society of Mechanical Engineers, 60 C (1994) 1120-1125. |
[14] | B. Bhuvaraghan, S.M. Srinivasan, B. Maffeo, R.D. McCLain, Y. Potdar, O. Prakash, Shot peening simulation using discrete and finite element methods, Advances in Engineering Software, 41 (2010) 1266-1276. |
[15] | T. Hong, J.Y. Ooi, B. Shaw, A numerical simulation to relate the shot peening parameters to the induced residual stresses, Engineering Failure Analysis, 15 (2008) 1097-1110. |
[16] | D. Ciampini, J.K. Spelt, M.Papini, Simulation of interference effects in particle streams following impact with a flat surface Part I. Theory and analysis, Wear, 254 (2003) 237-249. |
[17] | M. Papini, D. Ciampini, T. Krajac, J.K. Spelt, Computer modelling of interference effects in erosion testing: effect of plume shape, Wear, 255 (2003) 85-97. |
[18] | H.Z. Li, J. Wang, J.M. Fan, Analysis and modelling of particle velocities in micro-abrasive air jet, International Journal of Machine Tools & Manufacture, 49 (2009) 850-858. |
[19] | ISO 26910-1:2009, Springs – Shot peening – Part 1: General procedures. |
[20] | N. Rajaratnaum, Turbulent Jets, Elsevier, 1976. |
[21] | T. Shakouchi, Jet Flow Engineering –Fundamentals and Application–, Morikita, 2004. |
[22] | A. Sarkar, R.P. Singh, Air impingement technology for food processing: visualization studies, Lebensmittel-Wissenschaft und-Technologie, 37 (2004) 873-879. |
[23] | K.L. Johnson, Contact Mechanics, Cambridge University Press, 1985. |
[24] | D. Maugis, Contact Adhesion and Rupture of Elastic Solids, Springer, 203 (1999). |
[25] | F.M. White, Fluid Mechanics, Six Edition, McGraw-Hill, 2008. |
[26] | K. Aoki, K. Muto, H. Okanaga, Effects of dimples for drag and lift on a sphere with rotation, Transactions of the Japan Society of Mechanical Engineers, 77 C (2011) 793-802. |
[27] | J.B. Barlow, M.J. Domanski, Lift on stationary and rotation spheres under varying flow and surface conditions, AIAA Journal, 46 (2008) 1932-1936. |
[28] | Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology, 71 (1992) 239-250. |
[29] | C.X. Wong, M.C. Daniel, J.A. Rongong, Energy dissipation prediction of particle dampers, Journal of Sound and Vibration, 319 (2009) 91-118. |
[30] | A. Aryaei, K. Hashemnia, K. Jafarpur, Experimental and numerical study of ball size effect on restitution coefficient in low velocity impacts, International Journal of Impact Engineering, 37 (2010) 1037-1044. |
[31] | D.J. Tritton, Physical Fluid Dynamics, Second Edition, Oxford University Press, 1988. |
[32] | H. Maeda, N. Egami, C. Kagaya, N. Inoue, H. Takesita, K. Ito, Analysis of Particle Velocity and Temperature Distribution of Struck Surface in Fine Particle Peening, Transactions of the Japan Society of Mechanical Engineers, 67 C (2001) 306-312. |
[33] | P.H. Shipway, I.M. Hutchings, A method for optimizing the particle flux in erosion testing with a gas-blast apparatus, Wear, 174 (1994) 169-175. |
[34] | Y. Aiba, K. Murai, M. Omiya, J. Komotori, Observation of Particle Behavior in Fine Particle Peening process, Proceedings of 12th International Conference on Shot Peening (ICSP2014), Goslar, Germany, September 15-18, (2014). |