Journal of Laboratory Chemical Education
p-ISSN: 2331-7450 e-ISSN: 2331-7469
2022; 10(3): 59-66
doi:10.5923/j.jlce.20221003.03
Received: Nov. 9, 2022; Accepted: Nov. 30, 2022; Published: Dec. 6, 2022
Matthew Barnes1, Linden Black1, George Cadman1, Aiden Cranney1, Jessica Giddins1, Ella Hamilton1, Henry Jones1, Christopher Marlow1, Eleanor Pomiankowski1, Hannah Simpson1, Francesca Slack1, Luka Vukoje1, Robbie Warringham2, David Pattison2, Andrew Nortcliffe1
1School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
2DeepMatter®, 38 Queen St, Glasgow, G1 3DX, United Kingdom
Correspondence to: Andrew Nortcliffe, School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
Email: |
Copyright © 2022 The Author(s). Published by Scientific & Academic Publishing.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Inquiry-based learning approaches to laboratory education begin to bridge the gap between expository laboratory experiments and the open-inquiry research environment. In collaboration with DeepMatter we have utilised their DigitalGlassware® software and DeviceX hardware in a student-led project to investigate reaction optimization to introduce students to the reproducibility problems faced by the chemical industry. Students recorded real-time data of a reaction using DeviceX and used this to design further reaction iterations to work towards a more reproducible, optimized reaction. Using DeviceX gave students a real-life insight into the value of data and data science in the future of chemistry.
Keywords: Upper-Division Undergraduate, Inquiry-based learning, Chemoinformatics, Laboratory Computing / Interfacing
Cite this paper: Matthew Barnes, Linden Black, George Cadman, Aiden Cranney, Jessica Giddins, Ella Hamilton, Henry Jones, Christopher Marlow, Eleanor Pomiankowski, Hannah Simpson, Francesca Slack, Luka Vukoje, Robbie Warringham, David Pattison, Andrew Nortcliffe, Data-led Synthesis: An Inquiry-based Learning Project in Reaction Optimization with DigitalGlassware®, Journal of Laboratory Chemical Education, Vol. 10 No. 3, 2022, pp. 59-66. doi: 10.5923/j.jlce.20221003.03.
Scheme 1. N-Sulfonylation reaction between 1-napthoyl chloride and p-toluenesulfonyl hydrazide |
Figure 3. Image notes taken by the students with the RecipeRunner tablet app used to capture the ice bath set-ups. Note the difference in immersion depth in A cf. B |
Figure 4. An overlay of temperature profiles captured by the 6 groups during the addition of 1-napthoyl chloride/CH2Cl2 mixture (Reactions 1a-f) |
|
|
[1] | Bergman, R. G.; Danheiser, R. L. Reproducibility in Chemical Research. Angew. Chemie Int. Ed. 2016, 55 (41), 12548–12549. https://doi.org/https://doi.org/10.1002/anie.201606591. |
[2] | Baker, M. 1,500 Scientists Lift the Lid on Reproducibility. Nature 2016, 533 (7604), 452–454. https://doi.org/10.1038/533452a. |
[3] | Gomez, L. Decision Making in Medicinal Chemistry: The Power of Our Intuition. ACS Med. Chem. Lett. 2018, 9 (10), 956–958. https://doi.org/10.1021/acsmedchemlett.8b00359. |
[4] | Moosavi, S. M.; Chidambaram, A.; Talirz, L.; Haranczyk, M.; Stylianou, K. C.; Smit, B. Capturing Chemical Intuition in Synthesis of Metal-Organic Frameworks. Nat. Commun. 2019, 10 (1), 539. https://doi.org/10.1038/s41467-019-08483-9. |
[5] | Gibb, B. C. Chemical Intuition or Chemical Institution? Nat. Chem. 2012, 4 (4), 237–238. https://doi.org/10.1038/nchem.1307. |
[6] | Maryasin, B.; Marquetand, P.; Maulide, N. Machine Learning for Organic Synthesis: Are Robots Replacing Chemists? Angew. Chemie Int. Ed. 2018, 57 (24), 6978–6980. https://doi.org/https://doi.org/10.1002/anie.201803562. |
[7] | Zhou, Z.; Li, X.; Zare, R. N. Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent. Sci. 2017, 3 (12), 1337–1344. https://doi.org/10.1021/acscentsci.7b00492. |
[8] | Wei, J. N.; Duvenaud, D.; Aspuru-Guzik, A. Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci. 2016, 2 (10), 725–732. https://doi.org/10.1021/acscentsci.6b00219. |
[9] | Head, M. L.; Holman, L.; Lanfear, R.; Kahn, A. T.; Jennions, M. D. The Extent and Consequences of P-Hacking in Science. PLOS Biol. 2015, 13 (3), e1002106. |
[10] | Kerr, N. L. HARKing: Hypothesizing After the Results Are Known. Personal. Soc. Psychol. Rev. 1998, 2 (3), 196–217. https://doi.org/10.1207/s15327957pspr0203_4. |
[11] | Faber, J.; Fonseca, L. M. How Sample Size Influences Research Outcomes. Dental Press J. Orthod. 2014, 19 (4), 27–29. https://doi.org/10.1590/2176-9451.19.4.027-029.ebo. |
[12] | Button, K. Reboot Undergraduate Courses for Reproducibility. Nature 2018, 561 (7723), 287. https://doi.org/10.1038/d41586-018-06692-8. |
[13] | Chanda, A.; Daly, A. M.; Foley, D. A.; LaPack, M. A.; Mukherjee, S.; Orr, J. D.; Reid, G. L.; Thompson, D. R.; Ward, H. W. Industry Perspectives on Process Analytical Technology: Tools and Applications in API Development. Org. Process Res. Dev. 2015, 19 (1), 63–83. https://doi.org/10.1021/op400358b. |
[14] | Carter, C. F.; Lange, H.; Ley, S. V; Baxendale, I. R.; Wittkamp, B.; Goode, J. G.; Gaunt, N. L. ReactIR Flow Cell: A New Analytical Tool for Continuous Flow Chemical Processing. Org. Process Res. Dev. 2010, 14 (2), 393–404. https://doi.org/10.1021/op900305v. |
[15] | Foley, D. A.; Doecke, C. W.; Buser, J. Y.; Merritt, J. M.; Murphy, L.; Kissane, M.; Collins, S. G.; Maguire, A. R.; Kaerner, A. ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation Tools: The NCS Mediated Cascade Reaction of α-Thioamides to α-Thio-β-Chloroacrylamides. J. Org. Chem. 2011, 76 (23), 9630–9640. https://doi.org/10.1021/jo201212p. |
[16] | Rueping, M.; Bootwicha, T.; Sugiono, E. Continuous-Flow Catalytic Asymmetric Hydrogenations: Reaction Optimization Using FTIR Inline Analysis. Beilstein J. Org. Chem. 2012, 8, 300–307. |
[17] | Bertram, A.; Davies, E. S.; Denton, R.; Fray, M. J.; Galloway, K. W.; George, M. W.; Reid, K. L.; Thomas, N. R.; Wright, R. R. From Cook to Chef: Facilitating the Transition from Recipe-Driven to Open-Ended Research-Based Undergraduate Chemistry Lab Activities. New Dir. Teach. Phys. Sci. No 10 2014. |
[18] | Barnes, L.; Blaber, H.; Brooks, D. T. K.; Byers, L.; Buckley, D.; Byron, Z. C.; Chilvers, R. G.; Cochrane, L.; Cooney, E.; Damian, H. A.; Francis, L.; Fu He, D.; Grace, J. M. J.; Green, H. J.; Hogarth, E. J. P.; Jusu, L.; Killalea, C. E.; King, O.; Lambert, J.; Lee, Z. J.; Lima, N. S.; Long, C. L.; Mackinnon, M.-L.; Mahdy, S.; Matthews-Wright, J.; Millward, M. J.; Meehan, M. F.; Merrett, C.; Morrison, L.; Parke, H. R. I.; Payne, C.; Payne, L.; Pike, C.; Seal, A.; Senior, A. J.; Smith, K. M.; Stanelyte, K.; Stillibrand, J.; Szpara, R.; Taday, F. F. H.; Threadgould, A. M.; Trainor, R. J.; Waters, J.; Williams, O.; Wong, C. K. W.; Wood, K.; Barton, N.; Gruszka, A.; Henley, Z.; Rowedder, J. E.; Cookson, R.; Jones, K. L.; Nadin, A.; Smith, I. E.; Macdonald, S. J. F.; Nortcliffe, A. Free–Wilson Analysis of Comprehensive Data on Phosphoinositide-3-Kinase (PI3K) Inhibitors Reveals Importance of N-Methylation for PI3Kδ Activity. J. Med. Chem. 2019, 62 (22), 10402–10422. |
[19] | Bailie, A. E.; Nortcliffe, A. Synthesis of Quinolone Antibiotic Analogues: A Multistep Synthetic Chemistry Experiment for Undergraduates. J. Chem. Educ. 2021, 98 (10), 3333–3340. https://doi.org/10.1021/acs.jchemed.1c00459. |
[20] | Iwai, Y. Modified McFadyen-Stevens Reaction for a Versatile Synthesis of Aromatic Aldehydes. Org. Synth. 2018, 95, 276–288. https://doi.org/10.15227/orgsyn.095.0276. |
[21] | Reid, N.; Shah, I. The Role of Laboratory Work in University Chemistry. Chem. Educ. Res. Pract. 2007, 8 (2), 172–185. https://doi.org/10.1039/B5RP90026C. |
[22] | Davies, J. C.; Pattison, D.; Hirst, J. D. Machine learning for yield prediction for chemical reactions using in situ sensors. J. Mol. Graph. Model. 2023, 118, 108356. https://doi.org/10.1016/j.jmgm.2022.108356. |