[1] | J. E. McMurry, Study guide with student solutions manual for McMurry's Organic Chemistry, 8th ed. Cengage Learning, 2011. |
[2] | Szu E., Nandagopal K., Shavelson R. J., Lopez E. J., Penn J.H., Scharberg M., and Hill G.W., 2011, Understanding Academic Performance in Organic Chemistry. J. Chem. Educ., 88(9), 1238-1242. |
[3] | Horowitz G., Rabin L. A., Brodale, D.L., 2013, Improving student performance in organic chemistry: Help seeking behaviors and prior chemistry aptitude, J. Sch. Teach. Learn., 13(3), 120-133. |
[4] | Lafarge D. L., Morge L.M., Méheut M. M., 2014, A New Higher Education Curriculum in Organic Chemistry: What Questions Should Be Asked? J. Chem. Educ., 91(2), 173-178. |
[5] | Reid N., Shah I., 2007, The role of laboratory work in university chemistry, Chem. Educ. Res. Pract. 8(2), 172-185. |
[6] | Abrahams I., Sağlam M., 2010, A study of teachers’ views towards practical work in secondary schools in England and Wales. Int. J. Sci. Educ. 32(06), 753-768. https://doi.org/10.1080/09500690902777410 [Accessed 23 Apr. 2019]. |
[7] | National Council of Educational Research and Training, Manual of Microscale chemistry laboratory kit - for classes XI and XII- First edition, 2018. |
[8] | Hanson R., Bobobee L.H., Twumasi K. A., Antwi V., 2015, Designing micro chemistry experimentation for teacher trainees in a university, E.J.R.R.E.S., 3(5), 14-20. |
[9] | Tarai É. D. 2017, Small is beautiful: microscale chemistry in the classroom, Science in School, 39, 31-35. |
[10] | Kalogirou E, Nicas E 2010, Microscale chemistry: experiments for schools. Science in School 16, 27-32. www.scienceinschool.org/2010/issue16/microscale. |
[11] | Bell, B., Bradley, J. D., Steenberg, E. 2015. Chemistry Education Through Microscale Experiments. Chemistry Education, 539–562.doi:10.1002/9783527679300.ch22. |
[12] | Bradley J.D., 2016, Achieving the aims of school practical work with microchemistry, AJCE, 6(1), 2-16. |
[13] | Breuer, S. W., 2004, Teaching practical organic chemistry the microscale way, Chemical Education Journal (CEJ), Vol. 7 (2), 17-18. |
[14] | Mestres, R., 2004. A green look at the aldol reaction, Green Chem. 6, 583-603. |
[15] | Sebti S., Saber A., Rhihil A., Nazih R., Tahir R., 2001, Claisen–Schmidt condensation catalysis by natural phosphate, Appl. Catal., A. 206, 217–220. |
[16] | Yaish P., Poradosu E., Gilon C., Posner I., Levitzki A., Gazit, A., Osherov N., 1991, Tyrphostins. II. Heterocyclic and α-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J. Med. Chem. 34(6), 1896-1907. |
[17] | Entesar A. M., Elmaghraby H., M. Elmaghraby A., 2015, The Chemistry of Malononitrile and its derivatives, Int. J. Innov. Sci. Res., 16(1), 11-46. |
[18] | Sebti S., Saber A., Rhihil A., 1994, Phosphate naturel et phosphate trisodique: Nouveaux catalyseurs solides de la condensation de Knoevenagel en milieu hétérogène, Tetrahedron Lett. 35(50), 9399-94000. |
[19] | Pokalwar R.U., Hangarge R.V., Maske P.V. Shingare M.S., 2006, Synthesis and antibacterial activities of α-hydroxyphosphonates and α-acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde, ARKIVOC. 11, 196-204. |
[20] | Sebti S., Rhihil A., Saber A., Laghrissi M., Boulaajaj S., 1996, Synthèse des α-Hydroxyphosphonates sur des supports phosphatés en absence de solvant, Tetrahedron Lett. 37(23), 9399-9400. |
[21] | K. L. Williamson and K. M. Masters, Macroscale and Microscale Organic Experiments, 6th ed., Brooks/Cole, Cengage Learning: Belmont, 2011. |
[22] | Shoge Mansurat Oluwatoyin, 2011, Quality of Soaps Using Different Oil Blends, J. Microbiol. Biotech. Res., 1 (1): 29-34. |
[23] | Jean-Louis Migot, Chimie Organique de A à Z, 30- Synthèse du Triiodométhane, ed. Hermann. 2014. http://chimieorganique.jeanlouis.migot.over-blog.com/2014/07/30-synthese-du-triiodomethane.html [Last accessed 2 juin 2019]. |
[24] | Trost B.M., 1991, The atom economy-a search for synthetic efficiency. Science, 254, 1471-1477. |
[25] | Clark J. H., 1999, Green chemistry: challenges and opportunities. Green Chem., 1, 1-8. |
[26] | Sheldon R. A., 2007, The E Factor: Fifteen years on. Green Chem. 9(12), 1273-1283. |
[27] | P.J. Dunn, A. S. Wells, M.T. Williams, Green Chemistry in the Pharmaceutical Industry, In: P. J. Dunn, A. S. Wells, M.T. Williams, ed., Future Trends for Green Chemistry in the Pharmaceutical Industry. Wiley-VCH, Weinheim, pp. 333-355, 2010. |
[28] | Ribeiro, M. G. T. C., Costa, D. A., & Machado, A. A. S. C., 2010, “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. GREEN CHEM. LETT. REV., 3(2), 149–159. |
[29] | Ribeiro, M. G. T. C., Yunes, S. F., & Machado, A. A. S. C., 2014, Assessing the Greenness of Chemical Reactions in the Laboratory Using Updated Holistic Graphic Metrics Based on the Globally Harmonized System of Classification and Labeling of Chemicals. J. Chem. Educ., 91(11), 1901–1908. |
[30] | Dwyer A. O., Childs P. E., 2017, Who says Organic Chemistry is Difficult? Exploring Perspectives and Perceptions, EURASIA, J. Math. Sci. Tech., 13(7), 3599-3620. Available at: https://doi.org/10.12973/eurasia.2017.00748a [Accessed 17 Avr. 2019]. |
[31] | Mashita A., Norita M., Zurida H. I., 2009, The effect of an individualized laboratory approach through microscale chemistry experimentation on students' understanding of chemistry concepts, motivation and attitudes, Chem. Educ. Res. Pract., 10, 53-61. |
[32] | Hanson R., Bobobee L.H., Twumasi K. A., Antwi V., 2015, Designing micro chemistry experimentation for teacher trainees in a university, EJRRES, 3(5),14-20. |