[1] | Ackleh, A. S., Sacker, R. J., & Salceanu, P. (2014). On a discrete selection–mutation model. Journal of Difference Equations and Applications, (ahead-of-print), 1-21. |
[2] | F. Albrecht, H. Gatcke, A. Haddad, N. Wax, The dynamics of two interacting population, J. Math. Analysis Appl., 46 (658-670), 1974. |
[3] | Altman, E. (2014). Evolutionary Games. Encyclopedia of Systems and Control. |
[4] | P. Auger, R. Bravo de la Parra, S. Morand, and E. Sanchez, A predator-prey model with predators using hawk and dove tactics,” Mathematical Biosciences, vol. 177-178, pp. 185–200, 2002. |
[5] | M. R. Cullen, Linear Model in Biology, Ellis-Horwood Series in Mathematics and its Application, Cheichester (UK) 1985. |
[6] | N. S. Goel, S. C. Maitra, E. W. Montroll, On the Volterra and Other Nonlinear Models of Interacting Populations, Academic Press, New York, 1971. |
[7] | A. A. Keller, (2011). Stochastic delay Lotka-Volterra system to interacting population dynamics. System, 1(1), 0. |
[8] | A. N. Kolmogoroff, Sulla teoria di Volterra per la lotta per l’esistenza, Giornale Ist. Ital. Attuari, 7 (74-80), 1936. |
[9] | Liu, L. Chen, Complex dynamics of Holling type II Lotka-volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons and Fractals, 16 (2003) 311-320. |
[10] | A. E. Noble, A. Hastings, W. F. Fagan, Multivariate Moran Process with Lotka-Volterra Phenomenology. Physical review letters, 2011, 107.22: 228101. |
[11] | Sansone, G., & Conti, R. (1964). Non-linear differential equations (Vol. 10). Oxford: Pergamon Press. |
[12] | K. Stankova, A. Abate, M. W. Sabelis, Intra-seasonal strategies based on energy budgets in a dynamic predator–prey game, Advances in Dynamic Games. Springer International Publishing, 2013. p. 205-222. |
[13] | K. Stankova et al. "Joining or opting out of a Lotka–Volterra game between predators and prey: does the best strategy depend on modelling energy lost and gained?." (2013). |
[14] | Ma, Yi-An, and Hong Qian. "The Helmholtz Theorem for the Lotka-Volterra Equation, the Extended Conservation Relation, and Stochastic Predator-Prey Dynamics." arXiv preprint arXiv:1405.4311 (2014). |
[15] | Hui Zhang, Zhihui Ma, Gongnan Xie, and Lukun Jia, Effects of Behavioral Tactics of Predators on Dynamics of a Predator-Prey System, Advances in Mathematical Physics Volume 2014, Article ID 375236, 10 pages. |
[16] | N. Serra, Possible utility functions for predator – prey game, Journal of Game Theory 2014, 3 (1), p. 11-18. |
[17] | J. Von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton Univ. Press, 1944. |
[18] | W. G. Wilson, Lotka's Game in Predator Prey Linking Populations to Individuals, Theoretical Population Biology 50, 368 393 (1996). |
[19] | N. Wolf and M. Mangel, Strategy, compromise, and cheating in predator–prey games; Evolutionary Ecology Research, 2007, 9: 1293–1304. |