[1] | May Daher, Katayoun Rezvani, (2018). Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Current Opinion in Immunology, 51: 146-153. |
[2] | B. Bonavida, S. Chouaib, (2017). Resistance to anticancer immunity in cancer patients: potential strategies to reverse resistance. Annals of Oncology, 28: 457-467. |
[3] | Erez Nissim Baruch, Amy Lauren Berg, Michal Judith Besser, Jacob Schachter, Gal Markel, (2017). Adoptive T Cell Therapy: An Overview of Obstacles and Opportunities. Cancer, 123: 2154-2162. |
[4] | Gregory L. Beatty, Mark O’Hara, (2016). Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps. Pharmacology & Therapeutics, 166: 30-39. |
[5] | Bruno Silva-Santos, Sofia Mensurado, Seth B. Coffeit, (2019). γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nature Reviews Cancer, 19: 392-404. |
[6] | Yien Ning Sophia Wong, Kroopa Joshi, Martin Pule, Karl S Peggs, Charles Swanton, Sergio A Quezada, Mark Linch, (2017). Evolving adoptive cellular therapies in urological malignancies. Lancet Oncology, 18: e341-353. |
[7] | P. Comoli, C. Chabannon, U. Koehl, F. Lanza, A. Urbano-Ispizua, M. Hudecek, A. Ruggeri, S. Secondino, C. Bonini, P. Pedrazzoli, (2019). Development of adaptive immune effector therapies in solid tumors. Annals of Oncology, 30: 1740-1750. |
[8] | Dudley ME, Yang JC, Sherry R et al., (2008). Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin Oncol, 26(32): 5233-5239. |
[9] | Sonia Guedan, Marco Ruella, Carl H. June, (2019). Emerging Cellular Therapies for Cancer. Annu. Rev. Immunol. 37: 145-171. |
[10] | Wingchi Leung, Helen E. Heslop, (2019). Adoptive Immunotherapy with Antigen-Specific T Cells Expressing a Native TCR. Cancer Immunol Res 7(4): 528-533. |
[11] | Zachary E. Tano, Prasad S Adusumilli, (2018). Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Current Opinion in Immunology, 51: 103-110. |
[12] | Yuedi Wang, Feifei Luo, Jiao Yang, Chujun Zhao, Yiwei Chu, (2017). New Chimeric Antigen Receptor Design for Solid Tumors. Frontiers in Immunology, 8: 1-9. |
[13] | Janneke E. Jaspers, Renier J. Brentjens, (2017). Development of CAR T-cells designed to improve antitumor efficacy and safety. Pharmacology & Therapeutics, 178: 83-91. |
[14] | Laura Chiossone, Margaux Vienne, Yann M. Kerdiles, Eric Vivier, (2017). Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more. Seminars in Immunology, 31: 55-63. |
[15] | Katayoun Rezvani, (2019). Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplantation, 54:785-788. |
[16] | Siyu Yang, Xiaojiao Yin, Ying Yue, Siqing Wang, (2019). Application of Adoptive Immunotherapy in Ovarian Cancer. OncoTargets and Therapy, 12: 7975-7991. |
[17] | Benveniste, P.M. et al, (2018). Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci Immunol, 3 eaav4036. |
[18] | E. Lanitis, D. Dangaj, M. Irving, G. Coukos, (2017). Mechanisms regulating T-cell infiltration and activity in solid tumors. Annals of Oncology, 28 (Supplement 12); xii18-xii32. |
[19] | Valeria Quaranta, Michael C. Schmid, (2019). Macrophage-Mediated Subversion of Anti-Tumor Immunity. Cells, 8 747: 1-17. |
[20] | Davila ML, Riviere I, Wang X, et al., (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Trans Med., 6: 224ra225. |
[21] | Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al., (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukemia in children and young adults: a phase I dose-escalation trial. Lancet, 385: 517-528. |
[22] | Wendell A. Lim, Carl H June, (2017). The Principles of Engineering Immune Cells to Treat Cancer. Cell, 168: 724-740. |
[23] | Sherly Mardiana, Benjamin J. Solomon, Philip K. Darcy, Paul Beavis, (2019). Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci. Transl. Med., 11, eaaw2293: 1-8. |
[24] | D.M. O’Rourke, et al., (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med., 9, eaaa0984. |
[25] | Rachel Grosser, Leonid Cherkassky, Navin Chintala, Prasas S. Adusumilli, (2019). Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Cancer Cell 36: 471-482. |
[26] | Roch Houot, Liora Michal Schultz, Aurelien Marabelle, Holbrook Kohrt, (2015). T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunol Res; 3(10): 1115-1122. |