[1] | Zetter, B. R. (1998). "Angiogenesis and tumor metastasis." Annu Rev Med49: 407-424. |
[2] | Neitzel, L. T., C. D. Neitzel, et al. (1999). "Angiogenesis correlates with metastasis in melanoma." Ann Surg Oncol6(1): 70-74. |
[3] | Macchiarini, P., G. Fontanini, et al. (1994). "Angiogenesis: an indicator of metastasis in non-small cell lung cancer invading the thoracic inlet." Ann Thorac Surg57(6): 1534-1539. |
[4] | Bhat, T. A. and R. P. Singh (2008). "Tumor angiogenesis--a potential target in cancer chemoprevention." Food Chem Toxicol46(4): 1334-1345. |
[5] | Hoekman, K. and H. M. Pinedo (2004). "Angiogenesis: a potential target for therapy of soft tissue sarcomas." Cancer Treat Res120: 169-180. |
[6] | Hendriksen, E. M., P. N. Span, et al. (2009). "Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model." Microvasc Res77(2): 96-103. |
[7] | Zhao, M., F. H. Gao, et al. (2011). "JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer." Lung Cancer73(3): 366-374. |
[8] | Li, Y., P. Kundu, et al. (2012). "Gut Microbiota accelerate Tumor Growth via c-Jun and STAT3 Phosphorylation in APCMin/+ Mice." Carcinogenesis. |
[9] | Mora, L. B., R. Buettner, et al. (2002). "Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells." Cancer Res62(22): 6659-6666. |
[10] | Gray, M. J., J. Zhang, et al. (2005). "HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas." Oncogene24(19): 3110-3120. |
[11] | Xu, Q., J. Briggs, et al. (2005). "Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways." Oncogene24(36): 5552-5560. |
[12] | Gastpar, H. (1974). "The inhibition of cancer cell stickness by the methylxanthine derivative pentoxifylline (BL 191)." Thromb Res5(3): 277-289. |
[13] | Gude, R. P., A. D. Ingle, et al. (1996). "Inhibition of lung homing of B16F10 by pentoxifylline, a microfilament depolymerizing agent." Cancer Lett106(2): 171-176. |
[14] | Zeisberg, E. M., S. Potenta, et al. (2007). "Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts." Cancer Res67(21): 10123-10128. |
[15] | Kusaba, T., T. Nakayama, et al. (2006). "Activation of STAT3 is a marker of poor prognosis in human colorectal cancer." Oncol Rep15(6): 1445-1451. |
[16] | Kuroki, M. and J. T. O'Flaherty (1999). "Extracellular signal-regulated protein kinase (ERK)-dependent and ERK-independent pathways target STAT3 on serine-727 in human neutrophils stimulated by chemotactic factors and cytokines." Biochem J341 ( Pt 3): 691-696. |
[17] | Lin, N., Y. Moroi, et al. (2007). "Significance of the expression of phosphorylated-STAT3, -Akt, and -ERK1/2 in several tumors of the epidermis." J Dermatol Sci48(1): 71-73. |
[18] | Plaza-Menacho, I., T. van der Sluis, et al. (2007). "Ras/ERK1/2-mediated STAT3 Ser727 phosphorylation by familial medullary thyroid carcinoma-associated RET mutants induces full activation of STAT3 and is required for c-fos promoter activation, cell mitogenicity, and transformation." J Biol Chem282(9): 6415-6424. |
[19] | Bode, J. G., U. Albrecht, et al. (2011). "Hepatic acute phase proteins - Regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk withNF-kappaB-dependent signaling." Eur J Cell Biol. |
[20] | Sunila, E. S. and G. Kuttan (2006). "Piper longum inhibits VEGF and proinflammatory cytokines and tumor-induced angiogenesis in C57BL/6 mice." Int Immunopharmacol6(5): 733-741. |
[21] | Aleffi S, et al. (2005) Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 426: 1339-48 |
[22] | Jung, J. E., H. G. Lee, et al. (2005). "STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells." FASEB J19(10): 1296-1298. |
[23] | Aesoy, R., B. C. Sanchez, et al. (2008). "An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxytamoxifen in MCF-7 breast cancer cells." Mol Cancer Res6(10): 1630-1638 |
[24] | Chen H, et al. (2004) VEGF, VEGFRs expressions and activated STATs in ovarian epithelial carcinoma. Gynecol Oncol 94 3): 630-5 |
[25] | Menon, L. G., A. D. Ingle, et al. (2002). "Tumor regression of B16F10 melanoma in vivo by prevention of neovascularization: study on theophylline." Cancer Biother Radiopharm17(2): 213-217. |
[26] | Zhang, X., Y. Song, et al. (2011). "Indirubin inhibits tumor growth by antitumor angiogenesis via blockingVEGFR2-mediated JAK/STAT3 signaling in endothelial cell." Int J Cancer129(10): 2502-2511. |
[27] | Wu, D. H., L. Liu, et al. (2004). "Radiosensitization by pentoxifylline in human hepatoma cell line HepG2 and its mechanism." Di Yi Jun Yi Da Xue Xue Bao24(4): 382-385. |
[28] | Ravi K. Amaravadi (2007), “Targeted Therapy for Metastatic Melanoma” Clinical Advances in Hematology & Oncology. |
[29] | Joyce E. Rundhaug(2003) “Matrix Metalloproteinases, Angiogenesis, and Cancer”Clin Cancer Res , 551-554. |
[30] | Giampaolo Tortora1,DavideMelisi1 ,Fortunato Cia (2009) “Angiogenesis: A Target for Cancer Therapy” Current Pharmaceutical Design, 10, 11-26. |
[31] | Han-Chung Wu,et al.(2008) “Anti-Angiogenic Therapeutic Drugs for Treatment of Human Cancer”Journal of Cancer Molecules 4(2): 37-45, 2008 |
[32] | Nalluri SR, chu D, Keresztes R, Zhu X, Wu S. (2008) “Risk of venous thromboembolism in the angiogenesis inhibitor bevacizuamab in cancer patients” JAMA 300(19) 2277-2285. |
[33] | Dua, P. and R. P. Gude (2008). "Pentoxifylline impedes migration in B16F10 melanoma by modulating Rho GTPase activity and actin organisation." Eur J Cancer44(11): 1587-1595. |
[34] | Gude RP, et al. (2001) Inhibition of endothelial cell proliferation and tumor-induced angiogenesis bypentoxifylline. J Cancer Res ClinOncol 127 10): 625-30 |
[35] | Goel, P. N. and R. P. Gude (2011). "Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells." Mol Cell Biochem358(1-2): 141-151. |
[36] | Jain, M., A. Ratheesh, et al. (2010). "Pentoxifylline inhibits integrin-mediated adherence of 12(S)-HETE andTNFalpha-activated B16F10 cells to fibronectin and endothelial cells." Chemotherapy56(1): 82-88. |
[37] | Huang, S. (2007). "Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications." Clin Cancer Res13(5): 1362-1366. |
[38] | Mimori, K., T. Fukagawa, et al. (2008). "A large-scale study of MT1-MMP as a marker for isolated tumor cells in peripheral blood and bone marrow in gastric cancer cases." Ann Surg Oncol15(10): 2934-2942. |
[39] | Iwata-Kajihara, T., H. Sumimoto, et al. (2011). "Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors." J Immunol187(1): 27-36. |
[40] | Alshamsan, A., A. Haddadi, et al. (2010). "STAT3 Silencing in Dendritic Cells by siRNA Polyplexes Encapsulated in PLGA Nanoparticles for the Modulation of Anticancer Immune Response." Mol Pharm. |
[41] | Zhao, M., F. H. Gao, et al. (2011). "JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer." Lung Cancer73(3): 366-374. |
[42] | Lin, N., Y. Moroi, et al. (2007). "Significance of the expression of phosphorylated-STAT3, -Akt, and -ERK1/2 in several tumors of the epidermis." J Dermatol Sci48(1): 71-73. |
[43] | Chen, Z., P. S. Malhotra, et al. (1999). "Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer." Clin Cancer Res5(6): 1369-1379. |
[44] | Snyder, M., X. Y. Huang, et al. (2011). "Signal transducers and activators of transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration." J Biol Chem286(45): 38886-38893. |
[45] | Shu, M., Y. Zhou, et al. (2011). "Activation of a pro-survival pathway IL-6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin-induced differentiation of C6 malignant glioma cells." Mol Oncol5(3): 265-272. |
[46] | Niu, Z. B., C. L. Wang, et al. (2007). "Expression of Stat3, HIF-1alpha and VEGF in Wilms' tumor." Zhongguo Dang Dai Er Ke Za Zhi9(5): 461-464. |
[47] | Shin, J., H. J. Lee, et al. (2011). "Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells." PLoS One6(6): e21492. |
[48] | Zhang, Q., C. K. Oh, et al. (2006). "Hypoxia-induced HIF-1 alpha accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: involvement of ERK1/2 and PI-3K/Akt." Exp Cell Res312(2): 145-155. |
[49] | Waldner, M. J., S. Wirtz, et al. (2010). "VEGF receptor signaling links inflammation and tumorigenesis incolitis-associated cancer." J Exp Med207(13): 2855-2868. |
[50] | Olsson, A. K., A. Dimberg, et al. (2006). "VEGF receptor signalling - in control of vascular function." Nat Rev Mol Cell Biol7(5): 359-371. |