[1] | A. Einstein, B. Podolski, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev., vol. 47, pp. 777-780 (1935). |
[2] | N. Bohr, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., vol. 48, pp.696-702 (1935). |
[3] | D. Home, and F. Selleri, Bell's theorem and the EPR paradox, Riv. Nuovo Cim. Vol. 14, pp.1-95 (1991). |
[4] | J. S. Bell, On the Einstein Podolski Rosen paradox, Physics, vol. 1, pp.195-200 (1964). |
[5] | D. Bohm, Suggested interpretation of the quantum theory in terms of “hidden” variables I, Phys. Rev., vol. 85, pp. 166-179 (1952). |
[6] | C. Philippidis, and C. Dewdney, and B. J. Hiley, Quantum interference and the quantum potential, Il Nuovo Cimento B, vol. 52, pp.15-28 (1979). |
[7] | S. Kocsis, and B. Braverman, and S. Ravets, and M. J. Stevens, and R. P. Mirin, and L. K. Shalm, and A. M. Steinberg, Observing average trajectories of single photons in a two-slit interferometer, Science, vol. 332, pp. 1170-1173 (2011). |
[8] | B. G. Englert, and M. O. Scully, and G. Sussmann, and H. Walther; Surrealistic Bohm trajectories, Z. Naturforsh. A, vol. 47, pp. 1175-1186 (1992). |
[9] | G. Naaman-Maron, and N. Erez, and L Vaidman, Position measurements in the de Broglie-Bohm interpretation of quantum mechanics, Ann. Phys., vol. 327, pp. 2522–2542 (2012). |
[10] | G. Tastevin, and F. Laloe, Surrealistic Bohmian trajectories do not occur with macroscopic pointer, Eur. Phys. J. D, vol. 72, Article number183 (2018). |
[11] | D. H. Mahler, and L. Rozema, and K. Fisher, and L. Vermeyden, and K. J. Resch, and H. M. Wiseman, and A. Steinberg, Experimental nonlocal and surreal Bohmian trajectories, Sci. Adv., vol. 2, Article number 1501466 (2016). |
[12] | B. J. Hiley, and P. Vaan Reth, Quantum trajectories: real or surreal?, Entropy, vol. 202, Article number 353 (2018). |
[13] | R. P. Feynman, and R. B. Leighton, and M. Sands, Feynman lectures on physics, vol. 1, Ch. 37, Addison-Wesley (1963). |
[14] | M. Kaku, Quantum field theory: a modern introduction. Ch. 8, Oxford University Press (1993). |
[15] | A. Budiyono, and D. Rohrlich, Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction, Nature comm., vol. 8, Article number 1306 (2017). |
[16] | M. J. Kazemi, and S. Y. Rokni, Epistemic uncertainty from an averaged Hamilton-Jacobi formalism, Found. Phys., vol. 52, Article number 54 (2022). |
[17] | H. T. Boyer, Random Electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation, Phys. Rev. D, vol. 11, pp. 790-808 (1975). |
[18] | H. T. Boyer, Stochastic electrodynamics: the closest classical approximation to quantum theory. Atoms, vol. 7, Article number 29 (2019). |
[19] | E. Santos, Stochastic interpretation of quantum mechanics assuming that vacuum fields are real, Foundations, vol. 2, pp. 409-442 (2022). |
[20] | D.F. Styler, and M. S. Balkin, K. M. Becker, and M. R. Burns, and C. E. Dudley, and S. T. Forth, and J. S. Gaumer, and M. A. Kramer, and T. D. Wotherspoon, Nine formulations of quantum mechanics, Am. J. Phys., vol. 70, pp. 288-296 (1986). |
[21] | N. D. Mermin, Could Feynman have said this?, Phys. Today, vol 57, pp. 10-11 (2004). |
[22] | J. C. Cramer, The transactional interpetation of quantum mechanics, Rev. Mod. Phys., vol. 58, 647-687 (1986). |
[23] | M. Schlosshauer, The quantum-to-classical transition and decoherence. ArXiv, 1404.2635, (2019). |