[1] | Li, Z. D., Mao, Y. L., Weilenmann, M., and et al, 2022, Testing real quantum theory in an optical quantum network, Physical Review Letters, 128(4), 040402. https://doi.org/10.1103/PhysRevLett.128.040402. |
[2] | Chen, M. C., Wang, C., Liu, F. M., and et al, 2022, Ruling out real-valued standard formalism of quantum theory, Physical Review Letters, 128(4), 040403. https://doi.org/10.1103/PhysRevLett.128.040403. |
[3] | Cui, W. C., 2021, On an axiomatic foundation for a theory of everything, Philosophy Study, 11(4), 241–267. https://doi.org/10.17265/2159-5313/2021.04.001. |
[4] | Cui, W. C., 2021, On the philosophical ontology for a general system theory, Philosophy Study, 11(6), 443–458. https://doi.org/10.17265/2159-5313/2021.06.002. |
[5] | Newton, I., 1846, Newton’s Principia: The mathematical principles of natural philosophy (A. Motte, trans.), Daniel Adee, New York. (originally published in 1687). |
[6] | Goldstein, H., Poole, C., and Safko, J., 2002, Classical mechanics (3rd ed.), Pearson, United Kingdom. |
[7] | Vanderlinde, J., 2005, Classical electromagnetic theory (2nd ed.), Springer, Dordrecht. https://doi.org/10.1007/1-4020-2700-1. |
[8] | Das, S., 2013, Assumptions in quantum mechanics, International Journal of Theoretical and Mathematical Physics, 3(2), 53-68. |
[9] | von Neumann, J., 1955, Mathematical foundations of quantum mechanics (R. T. Beyer, trans), Princeton University Press, Princeton, NJ. |
[10] | Dirac, P. A. M., 1958, The principles of quantum mechanics (4th ed.), Oxford University Press, New York. |
[11] | Weilenmann, M., and Colbeck, R., 2020, Self-testing of physical theories, or, is quantum theory optimal with respect to some information-processing task? Physical Review Letters, 125, 060406. |
[12] | Weilenmann, M., and Colbeck, R., 2020, Toward correlation self-testing of quantum theory in the adaptive Clauser–Horne–Shimony–Holt game, Physical Review A, 102, 022203. |
[13] | Renou, M. O., Trillo, D., Weilenmann, M., and et al, 2021, Quantum theory based on real numbers can be experimentally falsified, Nature, 600, 625–629. |
[14] | Einstein, A., 2011, Letters on wave mechanics: Correspondence with H. A. Lorentz, Max Planck, and Erwin Schrödinger (K. Przibram, ed.), Philisophical Library/Open Road, New York. |
[15] | Stueckelberg, E. C. G., 1960, Quantum theory in real Hilbert space”, Helvetica Physica Acta, 33, 727–752.http://doi.org/10.5169/seals-113093. |
[16] | Wootters, W. K., 1981, Statistical distance and Hilbert space, Physical Review D, 23, 357–362.https://doi.org/10.1103/PhysRevD.23.357. |
[17] | Wootters, W. K., 1990, Local accessibility of quantum states, in Complexity, Entropy and the Physics of Information, Santa Fe Institute Studies in the Sciences of Complexity Vol. VIII, (W. Zurek, ed.), CRC Press, Boca Raton. |
[18] | McKague, M., Mosca, M., and Gisin, N., 2009, Simulating quantum systems using real Hilbert spaces, Physical Review Letters, 102, 020505. https://doi.org/10.1103/PhysRevLett.102.020505. |
[19] | Hardy, L., and Wootters, W. K., 2012, Limited holism and real vector-space quantum theory, Foundations of Physics, 42, 454–473. https://doi.org/10.1007/s10701-011-9616-6. |
[20] | Aleksandrova, A., Borish, V., and Wootters, W. K., 2013, Real-vector-space quantum theory with a universal quantum bit, Physical Review A, 87, 052106. https://doi.org/10.1103/PhysRevA.87.052106. |
[21] | Moretti, V., and Oppio, M., 2017, Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry, Reviews in Mathematical Physics, 29(6), 1750021. https://doi.org/10.1142/S0129055X17500210. |
[22] | Drechsel, P., 2019, Foundation of quantum mechanics: Once again, Foundations of Science, 24, 375–389. https://doi.org/10.1007/s10699-018-9555-1. |
[23] | Wu, K. D., Kondra, T. V., Rana, S., and et al, 2021, Operational resource theory of imaginarity, Physical Review Letters, 126, 090401. https://doi.org/10.1103/PhysRevLett.126.090401. |
[24] | Birkhoff, G., and von Neumann, J., 1936, The logic of quantum mechanics, Annals of Mathematics, 37(4), 823–843. https://doi.org/10.2307/1968621. |
[25] | Einstein, A., Podolsky, B., and Rosen, N., 1935, Can quantum-mechanical description of physical reality be considered complete? Physical Review Journals Archive, 47(10), 777–780. https://doi.org/10.1103/PhysRev.47.777. |
[26] | Bohr, N., 1935, Can quantum-mechanical description of physical reality be considered complete? Physical Review Journals Archive, 48, 696–702. https://doi.org/10.1103/PhysRev.48.696. |
[27] | Whitaker, A., 2006, Einstein, Bohr, and the quantum dilemma: From quantum theory to quantum information (2nd ed.), Cambridge University Press, UK. |
[28] | Pusey, M., Barrett, J., and Rudolph, T., 2012, On the reality of the quantum state, Nature Physics, 8, 475–478. https://doi.org/10.1038/nphys2309. |
[29] | P Goldstein, S. et al., 1999, An Exchange of Letters in PHYSICS TODAY on Quantum Theory Without Observers. Unpublished material, February 1999. https://sites.math.rutgers.edu/~oldstein/papers/qtwoe/qtwoe.html. |
[30] | Bell, J. S., 1964, On the Einstein-Podolsky-Rosen paradox, Physics Physique Fizika, 1, 195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195. |
[31] | Bell, J. S., 1966, On the problem of hidden variables in quantum mechanics, Reviews of Modern Physics, 38, 447–452. https://doi.org/10.1103/RevModPhys.38.447. |
[32] | Nielsen, M. A., and Chuang, I. L., 2002, Quantum computation and quantum information, Cambridge University Press, Cambridge, England. |
[33] | Cui, W. C., 2022, On the trajectory prediction of a throwing object using new general system theory, Philosophy Study, 12(2). |
[34] | Mayants L., 1984, The Enigma of Probability and Physics, D. Reidel Publishing Company, Qrdrecht, Holland. |
[35] | Oriols, X., and Mompart, J., 2019, Applied Bohmian mechanics: From nanoscale systems to cosmology (2nd ed.), Jenny Stanford Publishing Pte. Ltd., Singapore. |
[36] | Plávala, M., and Kleinmann, M., 2022, Operational theories in phase space: Toy model for the harmonic oscillator”. Physical Review Letters, 128(4), 040405. https://doi.org/10.1103/PhysRevLett.128.040405. |