[1] | M.J. Ungs, Deriving special relativity from the theory of subsonic compressible aerodynamics. International Journal of Theoretical and Mathematical Physics, 7(5), 113-131, 2017. |
[2] | W. Kollmann and G. Umont, Lamb vector properties of swirling jets. Proceedings of the 15th Australasian Fluid Mechanics Conference, Sydney, 412-416, 2004. |
[3] | P.M. Morse and K.U. Ingard. Theoretical Acoustics. Princeton University Press, Princeton, NJ, 1968. |
[4] | A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Volume 1. The Ronald Press Company, New York, NY, 1953. |
[5] | G.N. Ward, Linearized Theory of Steady High-Speed Flow. Cambridge University Press, Cambridge, NY, 1955. |
[6] | J.W. Miles, The Potential Theory of Unsteady Supersonic Flow. Cambridge at the University Press, New York, NY, 1959. |
[7] | M. Born, Einstein’s Theory of Relativity, revised edition. Dover Publications, Inc., New York, NY, 1965. |
[8] | H. Ockendon and J.R. Ockendon, Waves and Compressible Flow. Springer-Verlag, New York, NY, 2004. |
[9] | E. Madelung, Quantentheorie in hydrodynamischer form. Zeitschrift für Physik, 40(3-4), 322-326, 1927. |
[10] | K.W. Chow, Logarithmic nonlinear Schrödinger equation and irrotational, compressible flows: An exact solution. Physical Review E, 84, 016308(1)-016308(7), 2011. |
[11] | D.J. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, I. Physical Review, 85(2), 166-179, 1952. |
[12] | I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics. Annals of Physics, 100(1-2), 62-93, 1976. |
[13] | H. Hasimoto, A soliton on a vortex filament. Journal of Fluid Mechanics, 51(3), 477-485, 1972. |
[14] | L.S. Da Rios, Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque. Rendiconti del Circolo Matematico Di Palermo, 22, 117-135, 1906. |
[15] | R.L. Ricca, Rediscovery of Da Rios equations. Nature, 352, 561-562, 1991. |
[16] | S.V. Alekseenko, P.A. Kuibin, and V.L. Okulov, Theory of Concentrated Vortices-An introduction. Springer-Verlag, Berlin, Germany, 2007. |
[17] | T. Kambe, Elementary Fluid Mechanics. World Scientific Publishing, Co., Hackensack, NJ, 2007. |
[18] | C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, New York, NY, 2011. |
[19] | D.J. Struik, Lectures on Classical Differential Geometry, 2nd edition. Dover Publications, Inc., Mineola, NY, 1988. |
[20] | F.R. Hama, Progressive deformation of a curved vortex filament by its own induction. The Physics of Fluids, 5(10), 1156-1162, 1962. |
[21] | R.J. Arms and F.R. Hama, Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. The Physics of Fluids, 8(4), 553-559, 1965. |
[22] | G.L. Lamb, Jr., Elements of Soliton Theory. John Wiley & Sons, New York, NY, 1980. |
[23] | J.Z. Wu, H.Y. Ma, and M.D. Zhou, Vorticity and Vortex Dynamics. Springer-Verlag, Berlin, Germany, 2006. |
[24] | M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, Washington DC, 1972. |
[25] | C.R. Rogers and W.K. Schief, Backlund and Darboux Transformations – Geometry and modern applications in soliton theory. Cambridge University Press, New York, NY, 2002. |
[26] | C.R. Rogers and W.K. Schief, Novel integrable reductions in nonlinear continuum mechanics via geometric constraints. Journaal of mathematical Physics, 44(8), 3342-3368, 2003. |
[27] | S. Kida, A vortex filament moving without change of form. Journal of Fluid Mechanics, 112, 397-409, 1981. |
[28] | M.J. Ungs, The Theory of Quantum Torus Knots-Its foundation in differential geometry, Volume I. Lulu.com, 2010. |