[1] | Singh, Vinay, Lahiri, Joydev, Bhowmick, Debasis, Basu, D. N. Primordial lithium abundance problem of BBN and baryonic density in the universe. arXiv:1708.05567v2 [nucl-th] 14 Dec 2017. |
[2] | Broggini, C., Canton, L., Fiorentini, G., Villantec, F. L. The cosmological 7Li problem from a nuclear physics perspective. arXiv:1202.5232v2 [astroph.CO] 22 May 2012. |
[3] | Coc, A. Primordial Nucleosynthesis. arXiv:1707.01004v1 [astro-ph.CO] 4 Jul 2017. |
[4] | Arbey, A. AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies. arXiv:1106.1363 [astro-ph.CO], Comput.Phys. Commun. 183 (2012) 1822, 2011. |
[5] | Jenssen, E. New AlterBBN: A Code for Big Bang Nucleosynthesis with Light Dark Matter. Master’s Thesis, Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway, 2016. |
[6] | Fields, B., Molaro, P., Sarkar, S. Big-Bang Nucleosynthesis. arXiv:1412.1408v1 [astro-ph.CO] 3 Dec 2014. |
[7] | Fields, B. D. The primordial lithium problem. Ann. Rev. Nucl. Part. Sci. 61 (2011) 47–68, 2012 [arXiv:1203.3551 [astro-ph.CO]]. |
[8] | Virdee, T. Beyond the standard model of particle physics. Phil. Trans. R. Soc. A374: 20150259. http://dx.doi.org/10.1098/rsta.2015.0259, 2016. |
[9] | Robson, B.A. The generation model of particle physics and the cosmological matter-antimatter asymmetry problem. arXiv:1609.04034v1 [physics.genph], 8 Sep 2016. |
[10] | Steigman, G., Scherrer, R. Is The Universal Matter - Antimatter Asymmetry Fine Tuned?, arXiv:1801.10059v1 [astro-ph.CO], 2018. |
[11] | Sarkar, Subir. Big Bang nucleosynthesis and physics beyond the Standard Model. arXiv:hep-ph/9602260v2 15 Sep 1996. |
[12] | Frampton, P. Theory of Dark Matter. arXiv:1705.04373v1 [hep-ph] 10 May 2017. |
[13] | Turner, M.S. Dark Matter and Dark Energy: The Critical Questions. arXiv:astroph/0207297 v1 14 Jul 2002. |
[14] | Ackerman, L., et. al. Dark Matter and Dark Radiation. Phys. Rev. D 79, 023519 (2009) [arXiv:0810.5126 [hep-ph]]. |
[15] | Garrett, K., Duda G. Dark Matter: A Primer. arXiv:1006.2483v2 [hep-ph] 24 Jan 2011. |
[16] | Messiah, A. (1999). Quantum Mechanics. Mineola, N.Y.: Dover Publications. |
[17] | Griffiths, D. (2017). Introduction to Quantum Mechanics. Cambridge, UK: Cambridge University Press. |
[18] | Straumann, N. Wolfgang Pauli and Modern Physics. arXiv:0810.2213v1 [physics.hist-ph] 13 Oct 2008. |
[19] | Wikipedia. Standard Model of Elementary Particles. Retrieved from https://en.wikipedia.org/wiki/Standard_Model. |
[20] | Baudis, L. The Search for Dark Matter. arXiv:1801.08128v1 [astro-ph.CO] 24 Jan 2018. |
[21] | Lesgourgues, J., Pastor, S. Neutrino cosmology and Planck. 2014 New J. Phys. 16 065002. |
[22] | Brune, C. R. Nuclear Astrophysics. Fundamental Interactions, pp. 1-16 (2005) [arXiv:astro-ph/0502588v1 28 Feb 2005]. |
[23] | Cline, D. B., Stecker, F.W. Exploring the ultrahigh energy neutrino universe, 30 Mar 2000 [arXiv:astroph/0003459]. |
[24] | Gariazzo, S. Neutrino Properties and the Cosmological Tensions in the ΛCDM Model. arXiv:1812.00638v1 [astro-ph.CO] 3 Dec 2018. |
[25] | Feeney, S. M., et. al. Is there evidence for additional neutrino species from cosmology? JCAP 1304 (2013) 036, [arXiv:1302.0014]. |
[26] | Archidiacono, M., et. al. The Case for Dark Radiation. Physical Review D, vol.84, no. 12, Article ID 123008, 2011, [arXiv:1109.2767v2 [astro-ph.CO]]. |
[27] | Dvorkin, C., et. al. Neutrinos help reconcile Planck measurements with both the early and local Universe. Phys. Rev. D 90 no. 8, (Oct., 2014) 083503 [arXiv:1403.8049]. |
[28] | Ichikawa, K., et. al. Probing the Effective Number of Neutrino Species with Cosmic Microwave BackgroundPhys. Rev. D78, 083526 (2008), [arXiv:0803.0889 [astro-ph]]. |
[29] | Hack, T. -P. The Lambda CDM-model in quantum field theory on curved spacetime and Dark Radiation. 13 Jun 2013 arXiv:1306.3074 [gr-qc]. |
[30] | Verde, L., et. al., (Lack of) Cosmological evidence for dark radiation after Planck. JCAP 1309, 013 (2013), [arXiv:1307.2904] |
[31] | Mishra-Sharma, S., et. al. Neutrino masses and beyond- LCDM cosmology with LSST and future CMB experiments, Phys. Rev. D97 (2018) 123544, [arXiv:1803.07561v2 [astro-ph.CO]] |
[32] | Fischler, W., Meyers, J. Dark Radiation Emerging After Big Bang Nucleosynthesis? Phys. Rev. D83 (2011) 063520, [arXiv:1011.3501 [astro-ph.CO]]. |
[33] | Aguilar-Arevalo, A. A., [MiniBooNE Collaboration]. Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. Lett. 121 (2018) no.22, 221801, arXiv:1805.12028 [hep-ex]. |
[34] | Giunti, C., Lasserre, T. ev-Scale Sterile Neutrinos. arXiv:1901.08330v2 [hep-ph] 7 Aug 2019. |
[35] | Battye, R. A., Moss, A. Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations,” Phys. Rev. Lett. 112 no. 5, (2014) 051303, [arXiv:1308.5870 [astro-ph.CO]]. |
[36] | Jang, D., et. al. Effects of sterile neutrino and extra-dimension on big bang nucleosynthesis. arXiv:1611.04472v2 [nucl-th] 7 Nov 2017. |
[37] | Galvez, R., Scherrer, R. J.. Cosmology with Independently Varying Neutrino Temperature and Number. Phys. Rev. D 95, 063507. 7 Mar 2017. |
[38] | Griest, K. The Search for Dark Matter: WIMPs and MACHOs. arXiv:hepph/9303253v1 13 Mar 1993. |
[39] | Boyarksky, A., et. al. Sterile Neutrino Dark Matter. arXiv:1807.07938v2 [hepph] 26 Oct 2018. |
[40] | Schumann, M. Direct Detection of WIMP Dark Matter: Concepts and Status. arXiv:1903.03026v1 [astro-ph.CO] 7 Mar 2019. |
[41] | Kofman, L. The origin of matter in the universe: Reheating after inflation. arXiv:astro-ph/9605155v1 24 May 1996. |
[42] | Bramante, J., Unwin, J. Superheavy thermal dark matter and primordial asymmetries. J. J. High Energ. Phys. (2017) 2017: 119. https://doi.org/10.1007/JHEP02(2017)119. |
[43] | Smith, Michael S., Kawano, Lawrence H., Malaney, Robert E. Experimental, Computational, and Observational analysis of primordial nucleosynthesis. Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 85, no. 2, p. 219-247, 1993. |
[44] | Cyburt, Richard H. et al.. The NACRE Thermonuclear Reaction Compilation and Big Bang Nucleosynthesis. New Astron. 6 (2001) 215-238 astro-ph/0102179 UMN-TH-1936-01. |
[45] | Dent, T., et al. Big bang nucleosynthesis as a probe of fundamental ’constants’. 2008 J. Phys. G: Nucl. Part. Phys. 35 014005. |
[46] | Arbey, A., Auffinger, J., Hickerson, K., Jenssen, E. AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies, arXiv:1806.11095 [astro-ph.CO], 2019. |
[47] | Bhatia, N. Big-Bang Nucleosynthesis Reaction Rate Change Sensitivity Analysis. International Journal of Theoretical and Mathematical Physics 2019, 9(1): 1-8 DOI: 10.5923/j.ijtmp.20190901.01. |