[1] | B. H. Sun, Y. Lu, J. P. Peng, C. Y. Liu and Y. M. Zhao. New charge radius relations for atomic nuclei. arXiv:1408.6954v3 [nucl-th] 24 Nov 2014. |
[2] | T. Bayram, S. Akkoyun, S. O. Kara, and A. Sinan, New parameters for nuclear charge radius formulas, ACTA PHYSICA POLONICA B, 44 (8), 2013, 1791 – 1799. |
[3] | I. Angeli, Manifestation of non-traditional magic nucleon numbers in nuclear charge radii. ACTA PHYSICA DEBRECINA, 47 (7), (2013). |
[4] | A. Bohr, B. R. Mottelson, Nuclear Structure, Vol. 1, Benjamin, 1969, p. 138. |
[5] | T. Ozawa, S. I. Tanihata, Nuclear size and related topics, Nuclear Physics A 693 (2001) 32–62. |
[6] | G. Royer, On the coefficients of the liquid drop model mass formulae and nuclear radii, Nucl. Phys. A807, 105 (2008). |
[7] | J. L. Basdevant, J. Rich, and M. Spiro, Fundamentals in nuclear physics: from nuclear structure to cosmology, (Springer Science and Business Media, Inc., New York, USA, 2005) 11. |
[8] | E. Tel, S. Okuducu, G. Tanir, N. N. Akti and M. H. Bolukdemir, Calculation of Radii and Density of 7–19B Isotopes using Effective Skyrme Force, Commun. Theor. Phys. Vol. 49 No. 3 (2008) pp. 696 – 702. |
[9] | C. Merino, I. S. Novikov, and Yu. M. Shabelski, Nuclear Radii Calculations in Various Theoretical Approaches for Nucleus-Nucleus Interactions, arXiv:0907.1697v1 [nucl-th] 10 Jul 2009. |
[10] | S. K. Kenneth, Introductory Nuclear Physics, (John Wiley & Sons, New York, 1988) 12. |
[11] | J. J. Sakurai, Modern Quantum Mechanics, (Addison-Wesley Publishing Company Inc., California, 1994) 304. |
[12] | A. Palffy, Nuclear effects in atomic transitions, arXiv:1106.3218v1 [physics.atom-ph] 16 Jun 2011. |
[13] | L. Yung-Kuo, Problems and Solutions on Atomic, Nuclear and Particle Physics, (World Scientific Publishing Co. Pte. Ltd. Singapore, 2000) 61. |
[14] | A. I. Milstein, O. P. Sushkov, and I. S. Terekhov, Finite nuclear size effect on Lamb shift of s1/2, p1/2, and p3/2 atomic states, arXiv:physics/0309018v1 [physics.atom-ph] 2 Sep 2003. |
[15] | D. Andreas, M. Reiher, and J. Hinze, A Comparative Study of Finite Nucleus Models for low-lying States of few-electron high-Z Atoms, Chemical Physics Letters 320, 2000, 457 - 468. |
[16] | A. Adamu and Y. H. Ngadda, The Effect of Finite Size Nuclear Potential on 1s2s2p Energy States of Light and Heavy Nuclei, J – NAMP. Vol. 28, No. 2, (2015) pp 351 – 357. |
[17] | A. Adamu and Y. H. Ngadda, The Nuclear Finite–Size Corrections to Energies of n = 1, n = 2 and n = 3 States of Hydrogen Atom, J – NAMP. Vol. 30, (2015) pp 133 – 137. |
[18] | S. N. Ghoshal, Nuclear Physics, (S Chand and company limited, Ram Nagar, New Delhi, (2007) 406 – 407, 424. |
[19] | I. A. Aleksandrov, A. A. Shchepetnov, D. A. Glazov and V. M. Shabaev, Finite nuclear size corrections to the recoil effect in hydrogen-like ions, rXiv:1412.0149v1 [physics.atom-ph] 29 Nov 2014. |
[20] | R. N. Li and A. I. Milshtein, Effect of finite nuclear size on vacuum polarization in heavy atoms, JETP 79 (1), July 1994. |
[21] | R. T. Deck, J. G. Amar and G. Fralick, Nuclear size corrections to the energy levels of single-electron and -muon atoms, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 2173–2186. |