[1] | L. Foldy, S. Wouthuysen, 1950, On the Dirac theory of spin ½ particles and its non-relativistic limit., Phys. Rev., 78(1), 29–36. |
[2] | L. Foldy, 1956, Synthesis of covariant particle equations., Phys. Rev., 102(2), 568–581. |
[3] | L. Foldy, 1961, Relativistic particle systems with interaction., Phys. Rev., 122(1), 275–288. |
[4] | V.M. Simulik, I.Yu. Krivsky, 2010, On the extended real Clifford–Dirac algebra and new physically meaningful symmetries of the Dirac equation with nonzero mass., Reports of the National Academy of Sciences of Ukraine., 5, 82–88. |
[5] | I.Yu. Krivsky, V.M. Simulik, 2010, Fermi–Bose duality of the Dirac equation and extended real Clifford–Dirac algebra., Cond. Matt. Phys., 13(4), 43101(1–15). |
[6] | V.M. Simulik, I.Yu. Krivsky, 2011, Bosonic symmetries of the Dirac equation., Phys. Lett. A., 375(25), 2479–2483. |
[7] | W. Krech, 1969, Einige Bemerkungen zur Klassischen Theorie des Anschaulichen Wellenbildes für Kraftefreie Materie mit Spin ½., Wissenschaftliche Zeitschrift der Friedrich–Schiller Universität Jena,Mathematisch-Naturwissenschaftliche Reine., 18(1), 159–163. |
[8] | W. Krech, 1972, Erhaltungssatze des quantisierten Foldy–Wouthuysen Feldes., Wissenschaftliche Zeitschrift der Friedrich–Schiller Universität Jena,Mathematisch-Naturwissenschaftliche Reine., 21(1), 51–54. |
[9] | I.Yu. Krivsky, V.M. Simulik, I.L. Lamer, T.M. Zajac, Well-defined formulation of the Lagrange approach for the Foldy – Wouthuysen field, In Programme and abstracts of BGL-8 International Conference on Non-Euclidean Geometry in Modern Physics and Mathematics, 22−25 May 2012, Uzhgorod, Ukraine., p. 22. |
[10] | N.N. Bogoliubov, D.V. Shirkov, Introduction to the theory of quantized Fields, John Wiley and Sons, New York, 1980. |
[11] | F. Calogero, 1961, Covariant spin operators and associated conservation laws for a spinor field., Nuovo Cim., 20(2), 280–296. |
[12] | V.P. Neznamov, 2006, On the theory of interacting fields in the Foldy–Wouthuysen representation., Phys. Part. Nucl., 37(1), 86–103. |
[13] | V.P. Neznamov, A.J. Silenko, 2009, Foldy–Wouthuysen wave functions and conditions of transformation between Dirac and Foldy–Wouthuysen wave functions., J. Math. Phys., 50, 122302(1–15). |
[14] | V.P. Neznamov, 2012, Isotopic Foldy–Wouthuysen representation and chiral symmetry., Phys. Part. Nucl., 43(1), 33–69. |
[15] | N.N. Bogoliubov, A.A. Logunov, I,T. Todorov, Foundations of the axiomatic approach in quantum field theory, Nauka, Moscow, 1969. (in Russian). |
[16] | V.S. Vladimirov, Methods of the theory of generalized functions, Taylor and Francis, London, 2002. |
[17] | I.Yu. Krivsky, V.M. Simulik,, I.L. Lamer, T.M. Zajac, 2013, The Schrodinger–Foldy relativistic canonical quantum mechanics and the derivation of the Dirac equation., arXiv: 1301.6343[math-ph] 27 Jan 2013. |
[18] | I.Yu. Krivsky, V.M. Simulik,, I.L. Lamer, T.M. Zajac, 2013, The Dirac equation as the consequence of the quantum-mechanical spin ½ doublet model., TWMS J. App. Eng. Math., 3(1), 62–74. |
[19] | I.Yu. Krivsky, V.M. Simulik, Foundations of the quantum electrodynamics in the terms of field strengths, Naukova Dumka, Kiev, 1992. (in Russian). |
[20] | M. Reed, B. Simon, Methods of modern mathematical physics. Vol. 1. Functional analysis, Academic Press, London, 1980. |