[1] | S.Deser, "General Relativity and the Divergence Problem in Quantum Field Theory", Rev. Mod. Phys. 29, 417 (1957). |
[2] | B.S. DeWitt, "Gravity: a Universal Regulator?", Phys. Rev. Lett. 13, 114 (1964). |
[3] | C.J. Isham, A. Salam and J. Strathdee, "f-Dominance of Gravity", Phys. Rev. D3, 867 (1971); C.J. Isham, A. Salam and J. Strathdee, "Infinity Suppression in Gravity-Modified Quantum Electrodynamics", Phys. Rev. D3, 1805 (1971); C.J. Isham, A. Salam and J. Strathdee, "Infinity Suppression in Gravity-Modified Quantum Electrodynamics II", Phys. Rev. D5, 2548 (1972). |
[4] | H.C. Ohanian, "Finite quantum electrodynamics with a gravitationally smeared propagator", Phys. Rev. D55, 5140 (1997); H.C. Ohanian, "Smearing of propagators by gravitational fluctuations on the Planck scale", Phys. Rev. D60, 104051 (1999). |
[5] | T. Padmanabhan, "An approach to quantum gravity", Phys. Rev. D28, 745 (1983); T. Padmanabhan, "Physical significance of Planck length", Ann. Phys. (US) 165, 38 (1985); J.V. Narlikar and T. Padmanabhan, "Gravity, Gauge Theories and Quantum Cosmology", D. Reidel, Dordrecht (1986). |
[6] | Y. Nambu and G. Jona-Lasinio, "Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I", Phys. Rev. 122, 345 (1961); Y. Nambu and G. Jona-Lasinio, "Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II", Phys. Rev. 124, 246 (1961). |
[7] | S.P. Klevansky, "The Nambu—Jona-Lasinio model of quantum chromodynamics", Rev. Mod. Phys. 64, 649 (1992). |
[8] | A.H. Blin, B. Hiller and M. Schaden, "Electromagnetic form factors in the Nambu Jona-Lasinio model", Z. Phys. A331, 75 (1988). |
[9] | P. Ferstl, M. Schaden, and E. Werner, “Confinement and the composite ‘pionic’ Goldstone mode via the NJL mechanism in a bag like potential model”, Nucl. Phys. A452 ,680 (1986). |
[10] | T. Hatsuda and T. Kunihiro, “Possible critical phenomena associated with the chiral symmetry breaking”, Phys. Lett. B145, 7 (1984). |
[11] | V. Bernard, “Remarks on dynamical breaking of chiral symmetry and pion properties in the Nambu and Jona-Lasinio model”, Phys. Rev. D34, 1601 (1986). |
[12] | J.W. Moffat, “Stochastic Gravity”, Phys. Rev. D56, 6264 (1997). |
[13] | A.H. Blin, "Cosmological Constant from Conformal Fluctuations of the Metric", arXiv:astro-ph/0107503v1; A.H. Blin, "Planck scale variations of the metric tensor leading to a cosmological constant", Af. J. Math. Phys. 3, 121 (2006). |
[14] | J.P. Uzan, “Cosmological scaling solutions of non-minimally coupled scalar fields”, Phys. Rev D59, 123510 (1999). |
[15] | S. Weinberg, “The Cosmological Constant Problem”, Rev. Mod. Phys. 61, 1 (1989). |
[16] | A.H. Blin, "Fluctuations of the Metric Tensor and Fermion Propagators", arXiv:hep-ph/0010093v2. |
[17] | A. Das, "Field Theory", World Scientific, Singapore (1993). |
[18] | D.R. Brill and J.A. Wheeler, "Interaction of Neutrinos and Gravitational Fields", Rev. Mod. Phys. 29,465 (1957). |
[19] | L. Parker, "Quantized Fields and Particle Creation in Expanding Universes. I", Phys. Rev. 183, 1057 (1969); L. Parker, "Quantized fields and particle creation in expanding universes. II", Phys. Rev. D3, 346 (1971). |
[20] | G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle", Phys. Rev. D14, 3432 (1976). |
[21] | S. Perlmutter et al., "Discovery of a supernova explosion at half the age of the Universe and its cosmological implications", Nature 391, 51 (1998); A.G. Riess et al., "Observational evidence from supernovae for an accelerating universe and a cosmological constant", Astron. J. 116, 1009 (1998); E. Komatsu et al., "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation", Astrophys. J. Suppl. 192, 18 (2011). |
[22] | R.L. Jaffe, "Casimir effect and the quantum vacuum", Phys. Rev. D 72, 021301(R) (2005). |