[1] | Klinkhamer F.R., 2007, Fundamental length scale of quantum spacetime foam, .JETPLett. 86, 2167-2180. |
[2] | Amelino-Camelia G., and Smolin L., 2009,Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80, 084017;Gubitosi G. et al., 2009,A Constraint on Planck-scale Modifications to Electrodynamics with CMB polarization data. JCAP 0908, 021; Amelino-Camelia G., 2005, Building a case for a Planck-scale-deformed boost action: the Planck-scale particle-localization limit. Int.J.Mod.Phys.D 14, 2167-2180. |
[3] | Hossenfelder S. et al., 2003, Signatures in the Planck Regime. Phys. Lett. B ,575, 85-99; Hossenfelder S., 2004, Running coupling with minimal length Phys. Rev. D ,70, 105003; Hossenfelder S., 2006,Self-consistency in theories with a minimal length, Class. Quant. Grav., 23, 1815-1821. |
[4] | Faddeev, L., 1989, Mathematical View on Evolution of Physics. Priroda, 5, 11–18. |
[5] | Veneziano, G. A., 1986, Stringy Nature Needs Just Two Constants Europhys.Lett, 2, 199–211; Amati, D.; Ciafaloni, M., and Veneziano, G., 1989,Can Space-Time Be Probed Below the String Size? Phys.Lett.B, 216, 41–47; E. Witten, Phys.Today 1996, 49, 24–28. |
[6] | Adler, R. J., and Santiago,D. I.,1999,On gravity and the uncertainty principle.Mod. Phys. Lett. A, 14, 1371–1378. |
[7] | Scardigli, F., 1999,Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment. Phys. Lett. B, 452, 39–44; Bambi, C. A., 2008, Revision of the Generalized Uncertainty Principle. Class. Quant. Grav, 25, 105003. |
[8] | Garay,L. Quantum gravity and minimum length. Int.J. Mod. Phys. A 1995, 10, 145–166. |
[9] | Ahluwalia,D.V., 2000, Wave particle duality at the Planck scale: Freezing of neutrino oscillations. Phys.Lett, A275, 31–35; Ahluwalia, D.V., 2002, Interface of gravitational and quantum realms., Mod.Phys.Lett, A17, 1135–1146. |
[10] | Maggiore,M. A., B304,Generalized uncertainty principle in quantum gravity. Phys.Lett, B304, 65–69. |
[11] | Maggiore,M.,1993, The Algebraic structure of the generalized uncertainty principle. Phys.Lett.B,304, 319, 83–86. |
[12] | Bolen, B., and Cavaglia, M., 2005, (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. Gen.Rel.Grav. , 37, 1255–1263. |
[13] | Kempf,A., Mangano,G., Mann,R.B., 1995, Hilbert space representation of the minimal length uncertainty relation. Phys.Rev.D, 52, 1108–1118. |
[14] | Park, M.-I. 2008,, The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length. Phys.Lett.B, 659, 698–702. |
[15] | Kim,Wontae., and Son,Edwin J.; Yoon, 2008, Myungseok. Thermodynamics of a black hole based on a generalized uncertainty principle. JHEP, 08, 035. |
[16] | Jacobson,T., 1995, Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett, 75, 1260–1263. |
[17] | Padmanabhan,T.,2002, The Holography of gravity encoded in a relation between entropy, horizon area and action for gravity. Gen.Rel.Grav ,34, 2029–2035. |
[18] | Padmanabhan,T. 2005, Gravity and the thermodynamics of horizons. Phys.Rept, 406, 49–125. |
[19] | Paranjape,A., Sarkar, S., Padmanabhan,T., 2006, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys.Rev. D, 2006, 74, 104015. |
[20] | Padmanabhan,T., 2010, Thermodynamical Aspects of Gravity: New insights.Rep. Prog. Phys., 74, 046901. arXiv:0911.5004, 22p.p. |
[21] | Cai,R.-G., and Kim,S.P., 2005, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP, 02, 050. |
[22] | Shalyt-Margolin, A.E., and Suarez, J.G.,2003, Quantum mechanics of the early universe and its limiting transition. gr-qc/0302119, 16pp. |
[23] | Shalyt-Margolin, A.E., and Suarez, J.G., 2003, Quantum mechanics at Planck’s scale and density matrix. Intern. Journ. Mod. Phys D, 12, 1265–1278. |
[24] | Shalyt-Margolin, A.E., and Tregubovich, A.Ya., 2004, Deformed density matrix and generalized uncertainty relation in thermodynamics. Mod. Phys.Lett. A, 19, 71–82. |
[25] | Shalyt-Margolin, A.E., 2004, Nonunitary and unitary transitions in generalized quantum mechanics, new small parameter and information problem solving. Mod. Phys. Lett. A, 19, 391–404. |
[26] | Shalyt-Margolin, A.E., 2004, Pure states, mixed states and Hawking problem in generalized quantum mechanics. Mod. Phys. Lett. A, 19, 2037–2045. |
[27] | Shalyt-Margolin, A.E., 2004, The Universe as a nonuniform lattice in finite volume hypercube. I. Fundamental definitions and particular featuresIntern. Journ. Mod.Phys D, 13, 853– 864. |
[28] | Shalyt-Margolin, A.E.,2005, The Universe as a nonuniform lattice in the finitedimensional hypercube. II. Simple cases of symmetry breakdown and restoration. Intern.Journ. Mod. Phys. A, 20, 4951–4964. |
[29] | Shalyt-Margolin, A.E., and Strazhev,V.I, 2006, The Density Matrix Deformation in Quantum and Statistical Mechanics in Early Universe. In Proc. Sixth International Symposium ”Frontiers of Fundamental and Computational Physics”, edited by B.G. Sidharth at al. Springer,2006, pp.131–134. |
[30] | Shalyt-Margolin, A.E.,2005, The Density matrix deformation in physics of the early universe and some of its implications. In Quantum Cosmology Research Trends,edited by A. Reimer, Horizons in World Physics. 246, Nova Science Publishers, Inc., Hauppauge, NY,2005, pp. 49–91. |
[31] | Shalyt-Margolin, A.E.,2006, Deformed density matrix and quantum entropy of the black hole. Entropy, 8, 31–43. |
[32] | Shalyt-Margolin, A.E.,2007, Entropy in the Present and Early Universe. Symmetry, 18 , 299–320. |
[33] | Shalyt-Margolin, A.E.,2010, Entropy in the Present and Early Universe and Vacuum Energy, AIP Conference Proceedings, 1205, 160–167. |
[34] | Shalyt-Margolin, A.E.,2010, Entropy In The Present And Early Universe: New Small Parameters And Dark Energy Problem Entropy, 12, 932—952 |
[35] | Shalyt-Margolin, A.E.,2010, Deformed Quantum Field Theory, Thermodynamics at Low and High Energies, and Gravity. I arXiv: 1003.4523, 23pp. |
[36] | Adler,R. J., Chen,P., Santiago, D. I.,2010, The generalized uncertainty principle and black hole remnants. Gen.Rel.Grav., 13, 2101-2108. |
[37] | Custodio, P. S., and Horvath, J. E.,2003, The Generalized uncertainty principle, entropy bounds and black hole (non)evaporation in a thermal bath. Class.Quant.Grav., 20, L197-L203. |
[38] | Medved, A.J.M., and Vagenas, E.C.,2004, When conceptual worlds collide: The GUP and the BH entropy. Phys. Rev. D, 70, 124021. |
[39] | Nouicer,K.,2007, Quantum-corrected black hole thermodynamics to all orders in the Planck length. Phys.Lett B, 646, 63–71. |
[40] | Hawking, S.,1976, Black Holes and Thermodynamics. Phys. Rev. D, 13,191–204. |
[41] | Bekenstein,J.D.,1973, Black Holes and Entropy. Phys.Rev.D, 7, 2333–2345. |
[42] | Gibbons, G.W., and Hawking, S. W., 1977, Action integrals and partition functions in quantum gravity, Phys.Rev. D, 15, 2752--2769. |
[43] | Wald R., 1984, General Relativity The University of Chicago Press Chicago and London 1984, 491 pp. |
[44] | Mukohyama, S., and Randall, L.,2004, A Dynamical approach to the cosmological constant. Phys.Rev.Lett, 92, 211302. |
[45] | Cai,Rong-Gen, and Hu,Bin, Zhang,Yi, 2009, Holography, UV/IR Relation, Causal Entropy Bound and Dark Energy. Commun. Theor. Phys., 51, 954–960. |
[46] | Shapiro, Ilya L.,and Sola, Joan.,2008, Can the cosmological ”constant” run? – It may run. arXiv:0808.0315, 35pp. |
[47] | Jejjala, V., Kavic, M., Minic, D.,2007, Time and M-theory. Int. J. Mod. Phys. A ,22, 3317–3405. |
[48] | Jejjala, V., Kavic, M., Minic, D.,2007, Fine structure of dark energy and new physics., Adv. High Energy Phys, 2007, 21586. |
[49] | Jejjala, V. and Minic, D.,2007, Why there is something so close to nothing: Towards a fundamental theory of the cosmological constant., Int.J.Mod.Phys.A ,22, 1797-1818. |
[50] | Jejjala, V., Minic, D.,Tze, C-H., 2004, Toward a background independent quantum theory of gravity. Int. J. Mod. Phys. D, 13, 2307–2314. |
[51] | Shalyt-Margolin, A.E.,2009, Some Comments on Dynamical Character of Cosmological Constant and GUP, Foundations and Advances in Nonlinear Science, Proc. of the 14th Conference-School, Minsk 2009, pp. 103--107,ArXiv: 0807. 3485. |
[52] | Zel’dovich,Y.B., 1968, The Cosmological Constant and Elementary Particle Theory, Sov.Phys.Uspehi, 11, 381–393. |
[53] | Weinberg, S., 1989, The Cosmological Constant Problem. Rev. Mod. Phys., 61, 1–23. |
[54] | Perlmutter, S. et al.,1999, Measurements of Omega and Lambda from 42 high redshift supernovae., Astrophys. J ,517, 565–586; Riess A. G. et al.,1998, Observational evidence from supernovae for an accelerating universe and a cosmological constant., Astron. J. ,116, 1009–1038; Riess A. G. et al., 1999, BV RI light curves for 22 type Ia supernovae. Astron. J ,117, 707–724. |
[55] | Hooft, G. ’T.,1993, Dimensional reduction in quantum gravity.Essay dedicated to Abdus Salam gr-qc/9310026, 15pp. |
[56] | Hooft, G. ’T.,2000, The Holographic Principle, hep-th/ 0003004,15pp.; L.Susskind, 1995, The World as a hologram. J. Math. Phys, 36, 6377–6396. |
[57] | Bousso, R. The Holographic principle, 2002, Rev. Mod. Phys, 74, 825–874. |
[58] | Bousso, R. A, 1999, Covariant entropy conjecture. JHEP ,007 , 004--021 |
[59] | Cohen,A., Kaplan, D., Nelson, A.,1999, Effective field theory, black holes, and the cosmological constant., Phys. Rev. Lett ,82, 4971–4974. |
[60] | Balazs,C., and Szapudi,I.,2006, Naturalness of the vacuum energy in holographic theories., hep-th/0603133, 4pp. |
[61] | Fischler,W., and Susskind, L.,1998, Holography and cosmology. hep-th/9806039, 7pp. |
[62] | Shalyt-Margolin, A.E., and Strazhev, V. I.,2007, Dark Energy and Deformed Quantum Theory in Physics of the Early Universe. In Non-Eucleden Geometry in Modern Physics. Proc. 5-th Intern. Conference of Bolyai-Gauss- Lobachevsky (BGL-5), edited by Yu. Kurochkin and V. Red’kov,Minsk, 2007, 173–178. |
[63] | Shalyt-Margolin, A.E., and Strazhev, V. I. ,2009, Vacuum Energy and Small Parameter at Planck Scale, Nonlin. Phen. in Compl. Syst., 12,102-105. |
[64] | Balesku, R.,1975 Equilibruim and Nonequilibruim Statistical Mechanics,v.1,A Wiley Interscience Publications, New York-London-Sydney-Toronto. |
[65] | Bazarov, I.P.,1991, Thermodynamics, Moskow, Press "Higher School". |
[66] | Gyarmati, I., 1974, Non-Equilibruim Thermodynamics. Field Theory and Varitional Principles, Springer-Verlag, Berlin-Heidelberg-New York. |
[67] | Tao Zhu, Ji-Rong Ren, Ming-Fan Li.,2009, Influence of Generalized and Extended Uncertainty Principle on Thermodynamics of FRW universe. Phys.Lett.B.,674, 204–209. |
[68] | J.A.Wheeler,1957, On the nature of quantum geometrody-namics. Ann. Phys., 2, 604--632; J.A. Wheeler,1962, Geometrodynamics (Academic Press, London,1962); J.A. Wheeler,1964, Geometrodynamics and the issue of the final state,in Relativity, Groups and Topology, eds. B.S. and C.M. DeWitt (Gordon and Breach, New York, 1964); J.A. Wheeler,1964, Super- space and the nature of quantum geometrodynamics. in Battelle Rencontres: 1967,Lectures on Mathematics and Physics, eds. C. DeWitt and J.A. Wheeler (W. Benjamin and Co., New York, 1968). |
[69] | C.W. Misner, K.S. Thorne, and J.A. Wheeler, 1973, Gravitation, (Freeman, San Francisco, 1973). |
[70] | C.J. Isham,1997, Structural issues in quantum gravity. in Proceedings of the 14th International Conference on General Relativity and Gravitation (World Scientific, Singapore, 1997). |
[71] | Garay,L.,1999, Quantum evolution in spacetime foam. Int.J.Mod.Phys.A, 14, 4079–4120. |
[72] | Verlinde, E., 2011, On the Origin of Gravity and the Laws of Newton, JHEP,1104,029,arXiv:1001.0785. |
[73] | Padmanabhan,T.,2010, Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Letts. A, 25, 1129–1136, arXiv:0912.3165. |
[74] | Turyshev, S.G.,2010,Experimental tests of general relativity: recent progress and future directions. Phys. Usp., 52, 1–34 |
[75] | Dvali,G.,2004, Infrared Modification of Gravity. arXiv:hep-th/0402130 |
[76] | Patil, S.P., 2009,Degravitation, Inflation and the Cosmological Constant as an Afterglow. JCAP,0901, 017--035. |
[77] | Rubakov, V. A., and Tinyakov,P. G., 2008, Infrared- modified gravities and massive gravitons. Phys.Usp, 123., 759-792; Nikiforova,V., Randjbar-Daemi, S., Rubakov V., 2009, Infrared Modified Gravity with Dynamical Torsion. Phys. Rev.D, 80, 124050. |