[1] | Mukohyama, S., Randall, L. A, 2004, Dynamical approach to the cosmological constant., Phys.Rev.Lett., 92, 211302.; L.P. Chimento and D. Pavon, 1998, Inhomogeneous Universe Models with Varying Cosmological Term, Gen. Rel. Grav., 643--651; S. Carneiro,2003, Decaying Lambda cosmology with varying G, arXiv:gr-qc/0307114 |
[2] | Aldrovandi, R. Beltran Almeida, J. P., Pereira, J. G., 2005, Time-Varying Cosmological Term: Emergence and Fate of a FRW Comments., Grav.Cosmol. 11, 277-283 |
[3] | Richard T., 2008, Hammond, Terry Pilling, Dark Entropy, arXiv: 0806.1277 |
[4] | Kolb E., and Turner M., 1990, The Early Universe, Reading, Addison Wesley; Baumann D.,2009, TASI Lectures on Inflation , arXiv:0907.5424 |
[5] | Zel’dovich,Y.B., 1968, Sov.Phys.Uspehi, 11, 381–393 |
[6] | Weinberg, S., 1989, the Cosmological Constant Problem. Rev. Mod. Phys., 61 , 1–23 |
[7] | Klinkhamer F.R., 2007, Fundamental length scale of quantum spacetime foam., JETPLett., 86, 2167-2180 |
[8] | Amelino-Camelia G. Smolin L., 2009, Prospects for constraining quantum gravity dispersion with near term observations., Phys.Rev.D ,80, 084017; Gubitosi G. et al., Constraint on Planck-scale Modifications to Electrodynamics with CMB polarization data., JCAP,0908, 021; Amelino- Camelia G., 2005, Building a case for a Planck-scale- deformed boost action: the Planck-scale particle-localization limit., Int.J.Mod.Phys. D.,14, 2167-2180 |
[9] | Hossenfelder S. et al.,2003, Signatures in the Planck Regime., Phys. Lett.B.,575, 85-99; Hossenfelder S., 2004, Running coupling with minimal length, Phys.Rev.D., 70, 105003; Hossenfelder S., 2006, Self-consistency in theories with a minimal length, Class. Quant. Grav.,23, 1815-1821 |
[10] | Faddeev, L.,1989, Mathematical View on Evolution of Physics., Priroda, 5, 11–18 |
[11] | Veneziano,G. A, 1986, Stringy Nature Needs Just Two Constants.,Europhys. Lett., 2,199–211; Amati, D., Ciafaloni, M., Veneziano,G.,1989, Can Space-Time Be Probed Below the String Size? Phys.Lett.B, 216,41–47; E.Witten, 1996. Phys. Today, 49, 24–28 |
[12] | Adler,R.J., and Santiago,D.I., 1999, On gravity and the uncertainty principle., Mod. Phys. Lett. A ,14, 1371–1378 |
[13] | Scardigli,F.,1999, Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment., Phys. Lett. B., 452, 39–44; Bambi,C. A, 2008, Revision of the Generalized Uncertainty Principle., Class. Quant. Grav, 25, 105003 |
[14] | Garay, L.,1995. Quantum gravity and minimum length. Int.J. Mod.Phys.A, 10, 145–166 |
[15] | Ahluwalia, D.V., 2000, Wave particle duality at the Planck scale: Freezing of neutrino oscillations., Phys.Lett, A., 275, 31–35; Ahluwalia,D.V., 2002, Interface of gravitational and quantum realms., Mod.Phys.Lett., A. 17, 1135–1146 |
[16] | Maggiore, M. A., 1993, Generalized uncertainty principle in quantum gravity., Phys.Lett, 304, 65–69 |
[17] | Maggiore, M.,1993, The Algebraic structure of the generalized uncertainty principle, Phys.Lett.B, 319, 83–86 |
[18] | Kempf,A.; Mangano,G.; Mann,R.B.,1995, Hilbert space representation of the minimal length uncertainty relation. Phys.Rev.D, 52, 1108–1118 |
[19] | Shalyt-Margolin,A.E., and Suarez, J.G.,2003, Quantum mechanics of the early universe and its limiting transition. gr-qc/0302119, 16pp |
[20] | Shalyt-Margolin, A.E. and Suarez, J.G., 2003, Quantum mechanics at Planck’s scale and density matrix. Intern. Journ. Mod. Phys D. ,12, 1265–1278 |
[21] | Shalyt-Margolin, A.E., and Tregubovich, A.Ya., 2004, Deformed density matrix and generalized uncertainty relation in thermodynamics., Mod. Phys.Lett. A., 19, 71–82 |
[22] | Shalyt-Margolin, A.E., 2004, Nonunitary and unitary transitions in generalized quantum mechanics, new small parameter and information problem solving., Mod. Phys. Lett. A, 19, 391–404 |
[23] | Shalyt-Margolin, A.E., 2004, Pure states, mixed states and Hawking problem in generalized quantum mechanics. Mod. Phys. Lett. A, 19, 2037–2045 |
[24] | Shalyt-Margolin, A.E., 2004, The Universe as a nonuniform lattice in finite volume hypercube. I. Fundamental definitions and particular features., Intern. Journ. Mod.Phys D, 13, 853– 864 |
[25] | Shalyt-Margolin, A.E., 2005, The Universe as a nonuniform lattice in the finite-dimensional hypercube. II. Simple cases of symmetry breakdown and restoration. Intern.Journ.Mod. Phys.A, 20, 4951–4964 |
[26] | Shalyt-Margolin, A.E. and Strazhev, V.I., 2006, The Density Matrix Deformation in Quantum and Statistical Mechanics in Early Universe., Proc. Sixth International Symposium "Frontiers of Fundamental and Computational Physics", edited by B.G. Sidharth at al. Springer, 131–134 |
[27] | Shalyt-Margolin, A.E., 2005, The Density matrix deformation in physics of the early universe and some of its implications., Quantum Cosmology Research Trends,edited by A. Reimer, Horizons in World Physics., Nova Science Publishers, Inc., Hauppauge, 49–91 |
[28] | Shalyt-Margolin, A.E., 2006, Deformed density matrix and quantum entropy of the black hole. Entropy,8, 31–43 |
[29] | Shalyt-Margolin, A.E., 2007, Entropy in the Present and Early Universe, Symmetry, 18, 299–320 |
[30] | Shalyt-Margolin, A.E., 2010, Entropy in the Present and Early Universe and Vacuum Energy, AIP Conference Proceedings, 1205, 160–167 |
[31] | Shalyt-Margolin, A.E.,2010, Entropy In The Present And Early Universe: New Small Parameters And Dark Energy Problem, Entropy ,12, 932-952 |
[32] | Sciama, D.W., 1984, Proc. R.Soc.Lond. A 394, 1—23; Bowyer S., KorpelaE.J., Edelstein J., Lampton M., Morales C., Perez-Mercader J., Gomez J.F., Trapero J., 1999, ApJ 526, 10--31, Turner, M.S., 1991, Phys. scr.,36, 167--179 |
[33] | Perlmutter, S. et al., 1999, Measurements of Omega and Lambda from 42 high redshift supernovae., Astrophys. J ,517, 565–586; Riess A. G. et al.,1998, Observational evidence from supernovae for an accelerating universe and a cosmological constant., Astron. J. ,116, 1009–1038; Riess A. G. et al., 1999, BV RI light curves for 22 type Ia supernovae. Astron. J ,117, 707–724 |
[34] | Dan Hooper, 2009, TASI 2008 Lectures on Dark Matter, ArXiv: 0901.4090 |
[35] | Ratra,B. and Peebles,J.,1988,Cosmological Consequences of a Rolling Homogeneous Scalar Field., Phys. Rev. D,37, 3406–3422; Caldwell,R. R., Dave, R. and Steinhardt, P. J. Cosmological imprint of an energy component with general equation of state., 1998, Phys. Rev. Lett , 80, 1582–1585 |
[36] | Armendariz-Picaon, C., Damour,T.V., Mukhanov, V., 1999, k - inflation., Phys. Lett. B, 458, 209–218; J. Garriga, and V. Mukhanov, Perturbations in k-inflation., Phys. Lett. B,458, 219–225 |
[37] | Padmanabhan, T., 2002, Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D,66, 021301; Bagla, J. S. Jassal,H. K., Padmanabhan, T.,2003, Cosmology with tachyon field as dark energy., Phys. Rev. D, 67,063504; Abramo, L. R. W., and Finelli,F.,2003, Cosmological dynamics of the tachyon with an inverse power-law potential., Phys. Lett. B , 575, 165–171 |
[38] | Sahni, V. and Shtanov, Y., 2003, Brane world models of dark energy., JCAP,0311, 014--027; Elizalde, E., Nojiri, S., Odintsov, S. D.,2004, Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D ,70, 043539 |
[39] | Gliner, E. B.,1965, Algebraic Properties of Energy- Momentum Tensor and vacuum-like state of the matter, ZHETF, 49, 542–549 |
[40] | Wald, Robert. M., 1984, General Relativity. The University Chicago Press., Chicago and London 1984, 491 p.p |
[41] | Chakraborty, W.,2011, Acceleration Expantion of the Universe, ArXiv: 1105.1087 |
[42] | Kim,Yong-Wan, Lee,Hyung Won, Myung, Yun Soo,2009, Entropy bound of local quantum field theory with generalized uncertainty principle., Phys.Lett.B, 673,293-296 |
[43] | O’Connell, R. F. ,2007, Phys.Lett.A, 366:177-178 |
[44] | Jejjala, V., Kavic, M., Minic, D., 2007, Time and M-theory. Int. J. Mod. Phys. A ,22, 3317–3405 |
[45] | Jejjala, V., Kavic, M., Minic, D.,2007, Fine structure of dark energy and new physics., Adv. High Energy Phys, 2007, 21586 |
[46] | Jejjala, V. and Minic, D.,2007, Why there is something so close to nothing: Towards a fundamental theory of the cosmological constant., Int.J.Mod.Phys.A ,22, 1797-1818 |
[47] | Jejjala, V., Minic, D.,Tze, C-H., 2004, Toward a background independent quantum theory of gravity. Int. J. Mod. Phys. D, 13, 2307–2314 |
[48] | Padmanabhan, T., 2005, Darker side of the universe. and the crying need for some bright ideas! Proceedings of the 29th International Cosmic Ray Conference, Pune, India, 47–62. |
[49] | Padmanabhan, T., 2006, Dark Energy: Mystery of the Millennium. Paris 2005, Albert Einstein’s century, AIP Conference Proceedings 861, American Institute of Physics, New York, 858–866 |
[50] | Hooft, G. ’T.,1993, Dimensional reduction in quantum gravity.Essay dedicated to Abdus Salam gr-qc/9310026, 15pp |
[51] | Hooft, G. ’T., 2000, The Holographic Principle, hep-th/ 0003004, 15pp.; L.Susskind, 1995, The World as a hologram. J. Math. Phys, 36, 6377–6396 |
[52] | Bousso, R. The Holographic principle, 2002, Rev. Mod. Phys , 74, 825–874 |
[53] | Bousso, R. A, 1999, Covariant entropy conjecture. JHEP ,007, 004--021 |
[54] | Jacobson, T.,1995, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett ,75, 1260–1263 |
[55] | Balazs,C. and Szapudi,I.,2006, Naturalness of the vacuum energy in holographic theories., hep-th/0603133, 4pp |
[56] | Fischler,W. and Susskind, L.,1998, Holography and cosmology. hep-th/9806039, 7pp |
[57] | Cohen,A., Kaplan, D., Nelson, A.,1999, Effective field theory, black holes, and the cosmological constant., Phys. Rev. Lett ,82, 4971–4974 |
[58] | Myung,Y.S., 2005,Holographic principle and dark energy. Phys. Lett. B,610, 18–22 |
[59] | Myung, Y. S. and Min-Gyun Seo, 2009, Origin of holographic dark energy models., Phys. Lett. B,617, 435–439 |
[60] | Sergio del Campo, Júlio.C. Fabris, Ramón Herrera, Winfried Zimdahl,2011, On holographic dark-energy models, Phys. Rev.D, 83, 123006 |
[61] | Padmanabhan, T.,2005, A New perspective on gravity and the dynamics of spacetime. Int.Jorn.Mod.Phys. D, 14, 2263– 2270 |
[62] | Padmanabhan, T., 2002, The Holography of gravity encoded in a relation between entropy, horizon area and action for gravity., Gen.Rel.Grav , 34, 2029–2035 |
[63] | Padmanabhan,T.,2005, Holographic Gravity and the Surface term in the Einstein-Hilbert Action., Braz.J.Phys, 35, 362–372 |
[64] | Padmanabhan, T., 2006, Gravity: A New holographic perspective. Int.J.Mod.Phys.D, 15, 1659–1676 |
[65] | Mukhopadhyay,A. and Padmanabhan,T.,2006, Holography of gravitational action functionals, Phys.Rev.D, 74, 124023 |
[66] | Padmanabhan, T., 2008, Dark energy and gravity, Gen.Rel. Grav, 40, 529–564 |
[67] | Padmanabhan,T. and Paranjape,A.,2007, Entropy of null surfaces and dynamics of spacetime, Phys.Rev.D.,75, 064004 |
[68] | Padmanabhan, T., 2007,Gravity as an emergent phenomenon: A conceptual description. International Workshop and at on Theoretical High Energy Physics (IWTHEP 2007), AIP Conference Proceedings 939, American Institute of Physics, New York, 114–123 |
[69] | Padmanabhan, T., 2005, Gravity and the thermodynamics of horizons, Phys.Rept , 406, 49–125 |
[70] | Paranjape, A., Sarkar, S.; Padmanabhan, T.,2006, Thermodynamic route to field equations in Lancos- Lovelock gravity, Phys.Rev. D, 74, 104015 |
[71] | Bekenstein, J.D., 1973, Black Holes and Entropy. Phys. Rev. D.7, 2333–2345 |
[72] | Hawking, S., 1976, Black Holes and Thermodynamics, Phys. Rev.D, 13,191–204 |
[73] | Adler, R. J., Chen,P., Santiago, D. I.,2001, The generalized uncertainty principle and black hole remnants, Gen.Rel. Grav., 13, 2101-2108 |
[74] | Custodio, P. S. and Horvath, J. E.,2003, The Generalized uncertainty principle, entropy bounds and black hole (non)evaporation in a thermal bath, Class.Quant.Grav.,20, L197-L203 |
[75] | Cavaglia, M. and Das, S., 2004, How classical are TeV scale black holes? Class.Quant.Grav., 21, 4511–4523 |
[76] | Bolen, B., and Cavaglia,M., 2005,(Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle., Gen.Rel.Grav.,37, 1255–1263 |
[77] | Medved, A.J.M. and Vagenas, E.C., 2004, When conceptual worlds collide: The GUP and the BH entropy. Phys. Rev. D ,70, 124021 |
[78] | Park, M.-I.,2008, The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length., Phys.Lett.B , 659, 698–702 |
[79] | Kim,Wontae. and Son,Edwin J., 2008, Yoon, Myungseok. Thermodynamics of a black hole based on a generalized uncertainty principle. JHEP,08, 035--043 |
[80] | Nouicer,K,2007,Quantum-corrected black hole thermodynamics to all orders in the Planck length , Phys.Lett B,647, 63--71 |
[81] | Padmanabhan,T.,2010, Thermodynamical Aspects of Gravity: New insights.Rep. Prog. Phys. 73, 046901 |
[82] | Patil, S.P., 009, Degravitation, Inflation and the Cosmological Constant as an Afterglow. JCAP,0901, 017--035 |
[83] | Park, Mu-in., 2009, The Black Hole and Cosmological Solutions in IR modified Horava Gravity. JHEP,0909, 123--142 |
[84] | Rubakov, V. A., and Tinyakov,P. G., 2008, Infrared-modified gravities and massive gravitons. Phys.Usp, 123., 759-792; Nikiforova,V.; Randjbar-Daemi, S.; Rubakov V., 2009, Infrared Modified Gravity with Dynamical Torsion. Phys. Rev. D , 80, 124050 |
[85] | Balesku, R.,1975 Equilibruim and Nonequilibruim Statistical Mechanics, v.1, A Wiley Interscience Publications, New York-London-Sydney-Toronto |
[86] | Bazarov, I.P., 1991, Thermodynamics, Moskow, Press "Hi- gher School" |
[87] | Gyarmati, I., 1974, Non-Equilibruim Thermodynamics. Field Theory and Varitional Principles, Springer-Verlag, Berlin- Heidelberg-New York |
[88] | Cai,R.-G, and Kim,S.P, 2005, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP, 02, 050 – 067 |
[89] | Polyakov, A. M., 2010, Decay of Vacuum Energy. Nucl. Phys. B., 834, 316–329. |