[1] | Amini M, Roozbeh M., 2016. Least trimmed squares ridge estimation in partially linear regression models. J Stat Comput Simul. 86(14): 2766-2780. |
[2] | Amini M, Roozbeh M., 2019. Improving the prediction performance of the LASSO by subtracting the additive structural noises. Comput Stat.34(1):415-432. |
[3] | Bradley R.C, Bryc W., 1985. Multilinear forms and measures of dependence between random variables. Journal of Multivariate Analysis, 16, 335-367. |
[4] | Cai Z.W., 1991. Strong consistency and rates for recursive nonparametric conditional probability density estimates under (α, β)-mixing conditions. Stochastic Processes and Their Applications, 38, 323-333. |
[5] | Carroll R.J., 1982. Adapting for heteroscedasticity in linear models. Annals of Statistics, 10(4), 1224-1232. |
[6] | Carroll R.J., H¨ardle W., 1989. Second order effects in semiparametric weighted least squares regression. Statistics, 2, 179-186. |
[7] | Chen H., 1988. Convergence rates for parametric components in a partial linear model. Annals of Statistics, 16, 136-146. |
[8] | Chen M.H., Ren, Z., Hu S.H., 1998. Strong consistency of a class of estimators in partial linear model. Acta Mathematica Sinica, 41(2), 429-439. |
[9] | Engle R.F, Granger C.W.J., Rice J., Weiss G.H., 1986. Semiparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association, 81(394), 310-320. |
[10] | Fan J., Gijbels I., 1996. Local Polynomial Modelling and Its Applications. Chapman and Hall, London. |
[11] | Gao P., 2016. Strong stability of (α, β)-mixing sequences. Applied Mathematics-A Journal of Chinese Uni- versities, Series B, 31(4), 405-412. |
[12] | Gao J.T., Chen X.R., Zhao L.C., 1994. Asymptotic normality of a class of estimators in partial linear models. Acta Mathematica Sinica, 37(2), 256-268. |
[13] | H¨ardle W., Liang H., Gao J., 2000. Partially linear Models. Springer Verlag. |
[14] | Heckman N.E., 1986. Spline smoothing in a partly linear model. Journal of the Royal Statistical Society, Series B, Statistical Methodology, 48, 244-248. |
[15] | Horowitz JL., 2009. Semiparametric and nonparametric methods in econometrics: Springer series in statistics. New York: Springer-Verlag. |
[16] | Liang H., H¨ardle W., 1997. Asymptotic properties of parametric estimation in partially linear heteroscedastic models. Technical Report no 33. Humboldt-Universit¨at zu Berlin. |
[17] | Liang H.Y., Jing B.Y., 2009. Asymptotic normality in partially linear models based on dependent errors. Journal of Statistical Planning and Inference, 139, 1357-1371. |
[18] | Lu C.R., Lin Z.Y., 1997. Limit theory for mixed dependent variables. Science Press of China, Beijing. |
[19] | Liu X, Wang L, Liang H., 2011. Variable selection and estimation for semiparametric additive partial linear models. Stat Sin. 21:1225-1248. |
[20] | Opsomer JD, Ruppert D., 1999. A root-n consistent backfitting estimator for semiparametric additive mod- eling. J Comput Graph Stat. 8:715-732. |
[21] | Rice J., 1986. Convergence rates for partially linear spline models. Statistics and Probability Letters, 4, 203-208. |
[22] | Robinson P.M., 1987. Asymptotically efficiency estimation in the presence of heteroscedasticity of unknown form. Econometrica, 55, 875-891. |
[23] | Roozbeh M, Arashi M, Gasparini M., 2012. Seemingly unrelated ridge regression in semiparametric models. Commun Stat Theory Methods. 41(8):1364-1386 |
[24] | Roozbeh M, Arashi M., 2016. Shrinkage ridge regression in partial linear models. Commun Stat Theory Methods. 45(20): 6022-6044. |
[25] | Roozbeh M., 2018. Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion. Comput Stat Data Anal. 117:45-61. |
[26] | Schick A., 1996. Root-n consistent estimation in partly linear regression models. Statistics and Probability Letters, 28, 353-358. |
[27] | Speckman P., 1988. Kernel smoothing in partial linear models. Journal of the Royal Statistical Society, Series B, Statistical Methodology, 50, 413-436. |
[28] | Shao Q.M., 1989. Limit theorems for the partial sums of dependent and independent random variables. University of Science and Technology of China, 1-309, Hefei. |
[29] | Shen Y., Zhang Y.J., 2011. Strong limit theorems for (α, β)-mixing random variable sequences. Journal of University of Science and Technology of China, 41(9), 778-795. |
[30] | You J., Chen G., 2007. Semiparametric generalized least squares estimation in partially linear regression models with correlated errors. Journal of Statistical Planning and Inference, 137, 117-132. |
[31] | Yu C.Q., 2016. Convergence theorems of weighted sum for (α, β)-mixing sequences. Journal of Hubei Uni- versity (Natural Science), 38(6), 477-487. |