[1] | Williamson, J. M., Lin, H., Lyles, R. H., & Hightower, A. W. (2007). Power calculations for ZIP and ZINB models. Journal of Data Science, 5(4), 519-534. |
[2] | Lewsey, J. D., & Thomson, W. M. (2004). The utility of the zero‐inflated Poisson and zero‐inflated negative binomial models: a case study of cross‐sectional and longitudinal DMF data examining the effect of socio‐economic status. Community dentistry and oral epidemiology, 32(3), 183-189. |
[3] | Mullahy, J. (1986). Specification and testing of some modified count data models. Journal of econometrics, 33(3), 341-365. |
[4] | Hu, M. C., Pavlicova, M., & Nunes, E. V. (2011). Zero-inflated and hurdle models of count data with extra zeros: examples from an HIV-risk reduction intervention trial. The American journal of drug and alcohol abuse, 37(5), 367-375. |
[5] | Yang, S. (2014). A comparison of different methods of zero-inflated data analysis and its application in health. |
[6] | Saengthong, P., Bodhisuwan, W., & Thongteeraparp, A. (2015). The zero inflated negative binomial–Crack distribution: some properties and parameter estimation. Songklanakarin J. Sci. Technol, 37(6), 701-711. |
[7] | Yamrubboon, D., Thongteeraparp, A., Bodhisuwan, W., & Jampachaisri, K. (2017, November). Zero inflated negative binomial-Sushila distribution and its application. In AIP Conference Proceedings (Vol. 1905, No. 1, p. 050044). AIP Publishing LLC. |
[8] | Aryuyuen, S., Bodhisuwan, W., & Supapakorn, T. (2014). Zero inflated negative binomial-generalized exponential distribution and its applications. Songklanakarin Journal of Science and Technology, 36(4), 483-491. |
[9] | Warton, D. I. (2005). Many zeros does not mean zero inflation: comparing the goodness‐of‐fit of parametric models to multivariate abundance data. Environmetrics: The official journal of the International Environmetrics Society, 16(3), 275-289. |
[10] | Shapiro, R. L., & Lockman, S. (2010). Mortality among HIV-exposed infants: the first and final frontier. |
[11] | Mahy, M., Marsh, K., Sabin, K., Wanyeki, I., Daher, J., & Ghys, P. D. (2019). HIV estimates through 2018: data for decision-making. |
[12] | Nekesa, F., Odhiambo, C., & Chaba, L. (2019). Comparative Assessment of Zero-Inflated Models with Application to HIV Exposed Infants Data. Open Journal of Statistics, 9(6), 664-685. https://doi.org/10.4236/ojs.2019.96043. |
[13] | Shanker, R. (2015). Shanker distribution and its applications. International journal of statistics and Applications, 5(6), 338-348. |
[14] | Tlhaloganyang, B. P., Mooketsi, D. R., Leinanyane, L., & Sakia, R. (n.d.). A compound of generalized negative binomial and shanker distribution. |
[15] | Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1-14. |
[16] | Team, R. C. (2013). R: A language and environment for statistical computing. |
[17] | Nyamhanga, T., Frumence, G., & Simba, D. (2017). Prevention of mother to child transmission of HIV in Tanzania: assessing gender mainstreaming on paper and in practice. Health policy and planning, 32(suppl_5), v22-v30. |
[18] | UN-AIDS 2015 Progress Report on the Global Plan, UNAIDS / JC 2774/1/E. |
[19] | Blasco‐Moreno, A., Pérez‐Casany, M., Puig, P., Morante, M., & Castells, E. (2019). What does a zero mean? Understanding false, random and structural zeros in ecology. Methods in Ecology and Evolution, 10(7), 949-959. |
[20] | Zou, G. (2004). A modified Poisson regression approach to prospective studies with binary data. American journal of epidemiology, 159(7), 702-706. |