International Journal of Probability and Statistics
p-ISSN: 2168-4871 e-ISSN: 2168-4863
2012; 1(4): 119-132
doi: 10.5923/j.ijps.20120104.05
Navid Feroze 1, Muhammad Aslam 2
1Department of Mathematics and Statistics, Allama Iqbal Open University, Islamabad, Pakistan
2Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan
Correspondence to: Navid Feroze , Department of Mathematics and Statistics, Allama Iqbal Open University, Islamabad, Pakistan.
| Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
This paper describes the Bayesian analysis of the parameters of mixture of two components of Gumbel type II distribution. A heterogeneous population has been modeled by means of two components mixture of the Gumbel type II distribution under type I censored data. The Bayes estimators of the said parameters have been derived under the assumption of non-informative priors on the basis of different loss functions. A censored mixture data is simulated by probabilistic mixing for the computational purpose. The comparisons among the estimators have been made in terms of corresponding posterior risks. The posterior predictive distributions and intervals have been derived and evaluated under each prior.
Keywords: Bayes Estimators, Posterior Risks, Mixture Models, Loss Functions
Cite this paper: Navid Feroze , Muhammad Aslam , "On Posterior Analysis of Mixture of Two Components of Gumbel Type II Distribution", International Journal of Probability and Statistics , Vol. 1 No. 4, 2012, pp. 119-132. doi: 10.5923/j.ijps.20120104.05.
![]() | (1) |
![]() | (2) |
![]() | (3) |
![]() | (4) |
![]() | (5) |
![]() | (6) |
![]() | (7) |
and 
,
and
. Assuming independence, these priors result into a joint prior that is proportional to a constant. That joint prior has been used to derive the joint posterior distribution of
. The marginal distribution for each parameter can be obtained by integrating the joint posterior distribution with respect to nuisance parameters. The joint posterior distribution is:![]() | (8) |

Using the posterior distribution, discussed in (8), the Bayes estimators and posterior risks under different loss functions have been derived and presented in the following.Bayes estimators and associated risks under uniform prior using squared error loss function (SELF) are:
Bayes estimators and risk under uniform prior using quadratic loss function (QLF) are:
Bayes estimators and risk under uniform prior using weighted loss function (WLF) are:
Bayes estimators and risk under uniform prior using precautionary loss function (PLF) are:

Where
is the vector of parameters and
is (2×2) Fisher information matrix, defined as;
Where
have been defined in (2) and
. Assuming independence, the joint prior is obtained as:![]() | (9) |
![]() | (10) |
The Bayes estimators and associated posterior risks have been derived under different loss functions using the posterior distribution (10).Bayes estimators and associated risks under Jeffreys prior using squared error loss function (SELF) are:
Bayes estimators and risk under Jeffreys prior using quadratic loss function (QLF) are:
Bayes estimators and risk under Jeffreys prior using weighted loss function (WLF) are:
Bayes estimators and risk under Jeffreys prior using precautionary loss function (PLF) are:

The posterior predictive intervals under uniform prior can be obtained by solving the following two equations respectively.
Where ‘k’ is level of significanceThe posterior predictive intervals under uniform prior can be obtained by solving the following two equations respectively.
and
. The probabilistic mixing has been used to generate the mixture data. For each observation a random number has been generated from
. If
the observation has been randomly taken from first subpopulation and if
then the observation have been taken from the second subpopulation.The observations above a fixed censoring time T have been assumed to be right censored. Under each combination of parametric values, the choice of censoring time has been made so that the censoring rate in the respective sample has been 20%. As one sample cannot completely describe the behaviour and properties of the Bayes estimators, the results have been replicated 1000 times and the average of results has been presented in the tables below.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| [1] | A. R. Chechile, “Bayesian analysis of Gumbel distributed data”, Communications in Statistics - Theory and Methods, vol.30, no.3, pp. 211-224, 2001. |
| [2] | G. Corsini, F. Gini, M. V. Gerco, et al. “Cramer-Rao bounds and estimation of the parameters of the Gumbel distribution”, IEEE, vol.31, no.3, pp. 1202-1204, 2002. |
| [3] | A. Mousa, “Bayesian estimation, prediction and characterization for the Gumbel model based on records”, Statistics, vol.36, no.1, pp. 58-69, 2002. |
| [4] | D. Koutsoyiannis, and G. Baloutsos, “Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences”, Natural Hazards, vol.22, no.1, pp. 29-48, 2000. |
| [5] | Rasmussen, P. F., and Gautam, N. “Alternative PWM-estimators of the Gumbel distribution. Journal of Hydrology”, vol.280, no.1-4, pp. 265-271, 2003. |
| [6] | I. Malinowka, and D. Szynal, “On characterization of certain distributions of kth lower (upper) record values”, Applied Mathematics and Computation, vol.202, no.1, pp. 338-347, 2008. |
| [7] | S. Nadarajah, and S. Kotz, “The beta Gumbel distribution”, Math. Probab. Eng., vol.10, 323-332, 2004. |
| [8] | B. Miladinovic, and P. C. Tsokos, “Sensitivity of the Bayesian reliability estimates for the modified Gumbel failure model”, International Journal of Reliability, Quality and Safety Engineering (IJRQSE), vol.16(40), pp. 331-341, 2009. |
| [9] | Y. Park, S. Sheetlin, and L. J. Spouge, “Estimating the Gumbel scale parameter for local alignment of random sequences by importance sampling with stopping times”, Ann. Statist., vol.37, no.6A, pp. 3697-3714, 2009. |
| [10] | H. J. Heo, and D. J. Salas, “Estimation of quantiles and confidence intervals for the log-Gumbel distribution”, Stochastic Hydrology and Hydraulics, vol.10, no.3, pp. 187-207, 2010. |
| [11] | E. M. Thompson, J. B. Hewlett, and R. M. Vogel, “The Gumbel hypothesis test for left censored observations using regional earthquake records as an example”, Nat. Hazards Earth Syst. Sci., vol.11, pp. 115-126, 2011. |
| [12] | M. Saleem, and M. Aslam, "Bayesian Analysis of the Two Component Mixture of the Rayleigh Dist. With the Uniform and the Jeffreys Priors", J. of Applied Statistical Science, Vol.16, no.4, pp.105-113, 2008. |
| [13] | M. Saleem, M. Aslam, and P. Economou, "On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample", Journal of Applied Statistics, vol.37, no.1, pp. 25-40, 2010. |
| [14] | M. Y. Majeed, and M. Aslam, “Bayesian analysis of the two component mixture of inverted exponential distribution under quadratic loss functions”, International Journal of Physical Sciences, vol.7, no.9, pp. 1424-1434, 2012. |
| [15] | S. M. A. Kazmi, M. Aslam, and S. Ali "On the Bayesian estimation for two component mixture of maxwell distribution, Assuming Type I Censored Data", International Journal of Applied Science and Technology (IJAST), vol.2, no.1, pp. 197-218, 2012. |
| [16] | P. S. Laplace, “Theorie analytique des probabilities”, Veuve Courcier Paris, 1812. |
| [17] | H. Jeffreys, “Theory of Probability”, 3rd edn. Oxford University Press, pp. 432, 1961. |
| [18] | A. Zaharimi, S. Najid, and A. Mahir, “Analyzing Malaysian wind speed data using statistical distribution”, Proceedings of the 4th IASME / WSEAS Inter. Conf. on Energy & Environment, Malysia, pp. 363-370, 2009. |