International Journal of Probability and Statistics

p-ISSN: 2168-4871    e-ISSN: 2168-4863

2012;  1(4): 119-132

doi: 10.5923/j.ijps.20120104.05

On Posterior Analysis of Mixture of Two Components of Gumbel Type II Distribution

Navid Feroze 1, Muhammad Aslam 2

1Department of Mathematics and Statistics, Allama Iqbal Open University, Islamabad, Pakistan

2Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

Correspondence to: Navid Feroze , Department of Mathematics and Statistics, Allama Iqbal Open University, Islamabad, Pakistan.

Email:

Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.

Abstract

This paper describes the Bayesian analysis of the parameters of mixture of two components of Gumbel type II distribution. A heterogeneous population has been modeled by means of two components mixture of the Gumbel type II distribution under type I censored data. The Bayes estimators of the said parameters have been derived under the assumption of non-informative priors on the basis of different loss functions. A censored mixture data is simulated by probabilistic mixing for the computational purpose. The comparisons among the estimators have been made in terms of corresponding posterior risks. The posterior predictive distributions and intervals have been derived and evaluated under each prior.

Keywords: Bayes Estimators, Posterior Risks, Mixture Models, Loss Functions

Cite this paper: Navid Feroze , Muhammad Aslam , "On Posterior Analysis of Mixture of Two Components of Gumbel Type II Distribution", International Journal of Probability and Statistics , Vol. 1 No. 4, 2012, pp. 119-132. doi: 10.5923/j.ijps.20120104.05.

1. Introduction

The Gumbel type II distribution is used to model the extreme events like extreme earthquake, rainfalls, temperature, floods etc. It has another side of applications which deals with life testing experiments. Chechile[1] obtained the posterior distribution assuming that the random sample is taken from the Gumbel distribution using the conjugate prior. Corsini et al.[2] discussed the maximum likelihood (ML) algorithms and Cramer-Rao (CR) bounds for the location and scale parameters of the Gumbel distribution. Mousa[3] obtained the Bayesian estimation for the two parameters of the Gumbel distribution based on record values. Koutsoyiannis and Baloutsos[4] described that the Gumbel distribution has been the prevailing model for quantifying risk associated with extreme rainfall. Rasmussen and Gautam[5] extended the probability weighted moments (PWM) to what is called the generalized method of probability weighted moments (GPWM) because there is no reason why the PWMs provide the most efficient estimators of Gumbel parameters and quantile especially in hydrology. Malinowska and Szynal[6] obtained the Bayes estimators for the two parameters of a Gumbel distribution based on kth lower record values. Nadarajah and Kotz[7] introduced the beta Gumbel (BG) distribution and provided closed-form expressions for the moments, the asymptotic distribution of the extreme order statistics and discussed the maximum likelihood estimation procedure. Miladinovic and Tsokos[8] modified the classical Gumbel probability distribution in order to study the failure times of a given system. Park et al.[9] gave a novel equation for the scale parameter of the Gumbel distribution. Heo and Salas[10] examined the log-Gumbel distribution regarding quantile estimation and confidence intervals of quantiles. Thompson et al.[11] introduced a distributional hypothesis test for left censored Gumbel observations based on the probability plot correlation coefficient (PPCC).
The mixture models have received great attention of the analysts in the recent era. These models include finite and infinite number of components that can analyze different datasets. A finite mixture of probability distribution is suitable to study a population categorized in number of subpopulations. A population of lifetimes of certain electrical elements can be classified into number of subpopulations based on causes of failures. The analysis of mixture models under Bayesian framework has developed a significant interest among the statisticians. The authors dealing with Bayesian analysis of mixture models include Saleem and Aslam[12], Saleem et al.[13], Majeed and Aslam[14] and Kazmi et al.[15]. These contributions to the mixture models are the great motivations for the resent study.
We considered two component mixture of Gumbel type II distribution. The population of certain items is assumed to be partitioned into two subpopulations. The randomly selected observations from the said population are considered to be a part of one of the above mentioned subpopulations. These subpopulations are assumed to follow the Gumbel type II distribution. Therefore, the two components mixture of Gumbel type II distributions has been proposed to model this population. The observations have been assumed to be right censored. The inverse transformation technique of simulation under a probabilistic mixing has been used to generate data and to evaluate the performance of different estimators.

2. The Model and Likelihood Function

A density function for mixture of two components densities with mixing weights (p,q) is:
(1)
The following Gumbel type II distribution is considered for both mixture densities:
(2)
With the cumulative distribution function as:
(3)
The cumulative distribution function for the mixture model is:
(4)
Suppose n items are put on a life testing experiment and r units failed until time T while, n – r units are still working. Now based on causes of failure, the failed items are assumed to come either from subpopulation 1 or from subpopulation 2. Therefore it can be observed that r1 and r2 failed items come from first and second subpopulation respectively. Where r = r1 + r2. The remaining n – r items are assumed to be censored observations. The likelihood function for above censored data can be obtained as:
(5)
(6)
Expanding the last term by binomial expansion the likelihood function becomes:
(7)
Where
and

3. The Posterior Analysis under the Assumption of Uniform Prior

One of the most widely used non-informative priors, proposed by Laplace[16], is a uniform prior. It has been applied to many problems, and often the results are entirely satisfactory. This prior has been used for the posterior estimation.
Let , and. Assuming independence, these priors result into a joint prior that is proportional to a constant. That joint prior has been used to derive the joint posterior distribution of . The marginal distribution for each parameter can be obtained by integrating the joint posterior distribution with respect to nuisance parameters. The joint posterior distribution is:
(8)
Where
Using the posterior distribution, discussed in (8), the Bayes estimators and posterior risks under different loss functions have been derived and presented in the following.
Bayes estimators and associated risks under uniform prior using squared error loss function (SELF) are:
Bayes estimators and risk under uniform prior using quadratic loss function (QLF) are:
Bayes estimators and risk under uniform prior using weighted loss function (WLF) are:
Bayes estimators and risk under uniform prior using precautionary loss function (PLF) are:

4. The Posterior Analysis under the Assumption of Jeffreys Prior

Another non-informative prior has been suggested by Jeffreys[17] which is frequently used in situations where one does not have much information about the parameters. This is defined as the distribution of the parameters proportional to the square root of the determinants of the Fisher information matrix i.e.
Where is the vector of parameters and is (2×2) Fisher information matrix, defined as;
Where have been defined in (2) and. Assuming independence, the joint prior is obtained as:
(9)
The joint posterior distribution using the above prior is:
(10)
Where
The Bayes estimators and associated posterior risks have been derived under different loss functions using the posterior distribution (10).
Bayes estimators and associated risks under Jeffreys prior using squared error loss function (SELF) are:
Bayes estimators and risk under Jeffreys prior using quadratic loss function (QLF) are:
Bayes estimators and risk under Jeffreys prior using weighted loss function (WLF) are:
Bayes estimators and risk under Jeffreys prior using precautionary loss function (PLF) are:

5. Posterior Predictive Distributions and Intervals

The posterior predictive distributions under uniform and Jeffreys priors are:
The posterior predictive intervals under uniform prior can be obtained by solving the following two equations respectively.
Where ‘k’ is level of significance
The posterior predictive intervals under uniform prior can be obtained by solving the following two equations respectively.

6. Simulation Study

A simulation study has been conducted to assess and compare the performance of Bayes estimators and to analyse the impact of sample size, mixing weight and magnitude of parametric values on the Bayes estimators. Samples of sizes n = 100, 200, 300, 400 and 500 have been generated by inverse transformation method from two components mixture of Gumbel type II distribution. The parametric values used are: and . The probabilistic mixing has been used to generate the mixture data. For each observation a random number has been generated from . If the observation has been randomly taken from first subpopulation and if then the observation have been taken from the second subpopulation.
The observations above a fixed censoring time T have been assumed to be right censored. Under each combination of parametric values, the choice of censoring time has been made so that the censoring rate in the respective sample has been 20%. As one sample cannot completely describe the behaviour and properties of the Bayes estimators, the results have been replicated 1000 times and the average of results has been presented in the tables below.
Table 1. Bayes estimates and posterior risks under uniform prior using β1 = 3, β2 = 6 and p = 0.30
nβ1 = 3
SELFQLFWLFPLF
1003.286203.220483.253013.30310
0.053440.002700.011950.01216
2003.261743.229123.245353.27001
0.025920.001350.005900.00595
3003.199223.183223.191203.20324
0.012370.000680.002890.00290
4003.109673.099313.104483.11228
0.007770.000450.001870.00187
5003.036953.029363.033153.03886
0.005550.000340.001370.00137
nβ2 = 6
SELFQLFWLFPLF
1006.563646.432376.497346.59739
0.061360.003100.013720.01397
2006.514786.449636.482046.53130
0.029760.001550.006770.00683
3006.389906.357956.373896.39794
0.014210.000780.003310.00333
4006.211056.190356.200686.21625
0.008930.000520.002150.00215
5006.065816.050646.058216.06961
0.006380.000390.001570.00157
np = 0.30
SELFQLFWLFPLF
1000.333000.326340.329640.33471
0.002970.000150.000660.00068
2000.330520.327220.328860.33136
0.001440.000080.000330.00033
3000.324190.322570.323370.32460
0.000690.000040.000160.00016
4000.315110.314060.314590.31538
0.000430.000030.000100.00010
5000.307740.306980.307360.30794
0.000310.000020.000080.00008
Table 2. Bayes estimates and posterior risks under uniform prior using β1 = 3, β2 = 6 and p = 0.45
nβ1 = 3
SELFQLFWLFPLF
1003.269773.204383.236743.28658
0.052370.002650.011710.01192
2003.245433.212983.229123.25366
0.025400.001320.005780.00583
3003.183223.167303.175243.18723
0.012130.000660.002830.00284
4003.094123.083813.088963.09671
0.007620.000440.001830.00184
5003.021773.014213.017993.02366
0.005440.000330.001340.00134
nβ2 = 6
SELFQLFWLFPLF
1006.694916.561016.627296.72933
0.062580.003160.013990.01425
2006.645086.578636.611686.66192
0.030360.001580.006910.00697
3006.517706.485116.501366.52590
0.014490.000790.003380.00340
4006.335276.314156.324706.34058
0.009110.000530.002190.00220
5006.187126.171656.179386.19100
0.006510.000400.001600.00161
np = 0.45
SELFQLFWLFPLF
1000.492840.482990.487860.49538
0.004130.000210.000920.00094
2000.489170.484280.486720.49041
0.002000.000100.000460.00046
3000.479800.477400.478590.48040
0.000960.000050.000220.00022
4000.466370.464810.465590.46676
0.000600.000030.000140.00014
5000.455460.454320.454890.45575
0.000430.000030.000110.00011
Table 3. Bayes estimates and posterior risks under Jeffreys prior using β1 = 3, β2 = 6 and p = 0.30
nβ1 = 3
SELFQLFWLFPLF
1003.264293.199013.231323.28108
0.052450.002650.011730.01194
2003.239993.207593.223713.24821
0.025440.001330.005790.00584
3003.177893.162003.169923.18189
0.012150.000660.002830.00285
4003.088943.078643.083783.09153
0.007630.000440.001830.00184
5003.016713.009163.012933.01860
0.005450.000330.001340.00135
nβ2 = 6
SELFQLFWLFPLF
1006.554886.423786.488676.58858
0.060370.003050.013500.01374
2006.506086.441026.473396.52258
0.029280.001530.006670.00672
3006.381376.349466.365386.38940
0.013980.000760.003260.00328
4006.202766.182086.192406.20795
0.008780.000510.002110.00212
5006.057716.042566.050136.06151
0.006270.000380.001550.00155
np = 0.30
SELFQLFWLFPLF
1000.330810.324190.327470.33251
0.002870.000150.000640.00065
2000.328350.325060.326700.32918
0.001390.000070.000320.00032
3000.322050.320440.321250.32246
0.000660.000040.000160.00016
4000.313040.312000.312520.31330
0.000420.000020.000100.00010
5000.305720.304960.305340.30591
0.000300.000020.000070.00007
Table 4. Bayes estimates and posterior risks under Jeffreys prior using β1 = 3, β2 = 6 and p = 0.45
nβ1 = 3
SELFQLFWLFPLF
1003.247973.183013.215163.26467
0.051400.002600.011490.01170
2003.223793.191563.207593.23197
0.024930.001300.005680.00573
3003.162003.146193.154073.16598
0.011900.000650.002780.00279
4003.073503.063253.068363.07607
0.007480.000430.001800.00180
5003.001622.994122.997873.00351
0.005340.000320.001320.00132
nβ2 = 6
SELFQLFWLFPLF
1006.685976.552256.618446.72035
0.061570.003110.013770.01402
2006.636206.569846.602866.65303
0.029870.001560.006800.00686
3006.509006.476456.492686.51719
0.014260.000780.003330.00334
4006.326816.305726.316256.33211
0.008960.000520.002150.00216
5006.178866.163416.171136.18274
0.006400.000390.001580.00158
np = 0.45
SELFQLFWLFPLF
1000.489600.479810.484650.49212
0.003990.000200.000890.00091
2000.485960.481100.483510.48719
0.001940.000100.000440.00044
3000.476640.474260.475450.47724
0.000920.000050.000220.00022
4000.463300.461760.462530.46369
0.000580.000030.000140.00014
5000.452470.451330.451900.45275
0.000410.000030.000100.00010
Table 5. Bayes estimates and posterior risks under uniform prior using β1 = 6, β2 = 9 and p = 0.45
nβ1 = 6
SELFQLFWLFPLF
1006.213286.151146.182056.22903
0.065560.014950.031220.03150
2006.116916.086336.101586.12461
0.031530.007470.015330.01540
3006.065316.045096.055196.07039
0.020620.004980.010130.01016
4006.072206.057026.064606.07600
0.015480.003740.007600.00762
5005.979465.967505.973475.98246
0.012000.002990.005990.00600
nβ2 = 9
SELFQLFWLFPLF
1009.733039.635709.684129.75770
0.214870.011190.048910.04934
2009.546469.498739.522539.55847
0.102570.005600.023930.02403
3009.279269.248339.263779.28703
0.064450.003730.015490.01554
4009.062279.039619.050929.06795
0.046040.002800.011340.01137
5009.001618.983618.992609.00613
0.036310.002240.009010.00903
np = 0.45
SELFQLFWLFPLF
1000.469790.465090.467430.47098
0.004960.001130.002360.00238
2000.462500.460190.461340.46309
0.002380.000570.001160.00116
3000.458600.457070.457840.45899
0.001560.000380.000770.00077
4000.459120.457970.458550.45941
0.001170.000280.000570.00058
5000.452110.451210.451660.45234
0.000910.000230.000450.00045
Table 6. Bayes estimates and posterior risks under Jeffreys prior using β1 = 6, β2 = 9 and p = 0.45
nβ1 = 6
SELFQLFWLFPLF
1006.182056.151146.151146.19765
0.064580.014870.030910.03118
2006.101586.086336.086336.10924
0.031300.007450.015250.01532
3006.055196.045096.045096.06025
0.020510.004970.010090.01012
4006.064606.057026.057026.06839
0.015420.003730.007580.00760
5005.973475.967505.967505.97647
0.011960.002990.005970.00598
nβ2 = 9
SELFQLFWLFPLF
1009.684129.635709.635709.70855
0.211640.011130.048420.04885
2009.522539.498739.498739.53449
0.101800.005580.023810.02391
3009.263779.248339.248339.27151
0.064120.003720.015440.01548
4009.050929.039619.039619.05659
0.045870.002790.011310.01134
5008.992608.983618.983618.99711
0.036210.002240.008990.00901
np = 0.45
SELFQLFWLFPLF
1000.467430.465090.465090.46861
0.004880.001120.002340.00236
2000.461340.460190.460190.46192
0.002370.000560.001150.00116
3000.457840.457070.457070.45822
0.001550.000380.000760.00077
4000.458550.457970.457970.45883
0.001170.000280.000570.00057
5000.451660.451210.451210.45188
0.000900.000230.000450.00045
Table 7. Bayes estimates and posterior risks under uniform prior using β1 = 6, β2 = 9 and p = 0.30
nβ1 = 6
SELFQLFWLFPLF
1006.340086.276686.308226.35615
0.066900.015250.031860.03214
2006.241756.210546.226106.24960
0.032180.007630.015640.01571
3006.189096.168466.178766.19428
0.021040.005080.010330.01036
4006.196126.180636.188366.20000
0.015790.003810.007750.00777
5006.101496.089296.095386.10455
0.012240.003050.006110.00612
nβ2 = 9
SELFQLFWLFPLF
1009.698249.601269.649509.72282
0.214100.011150.048730.04917
2009.512339.464779.488499.52431
0.102210.005580.023840.02395
3009.246099.215279.230669.25383
0.064220.003720.015440.01548
4009.029879.007309.018579.03554
0.045880.002790.011300.01133
5008.969448.951508.960468.97393
0.036190.002230.008980.00899
np = 0.30
SELFQLFWLFPLF
1000.312010.308900.310450.31281
0.003290.000750.001570.00158
2000.307180.305640.306410.30756
0.001580.000380.000770.00077
3000.304590.303570.304080.30484
0.001040.000250.000510.00051
4000.304930.304170.304550.30512
0.000780.000190.000380.00038
5000.300270.299670.299970.30042
0.000600.000150.000300.00030
Table 8. Bayes estimates and posterior risks under Jeffreys prior using β1 = 6, β2 = 9 and p = 0.30
nβ1 = 6
SELFQLFWLFPLF
1006.308226.276686.276686.32413
0.065890.015170.031540.03182
2006.226106.210546.210546.23392
0.031930.007610.015570.01563
3006.178766.168466.168466.18393
0.020930.005070.010300.01033
4006.188366.180636.180636.19224
0.015730.003810.007740.00775
5006.095386.089296.089296.09844
0.012210.003050.006100.00611
nβ2 = 9
SELFQLFWLFPLF
1009.649509.601269.601269.67384
0.210880.011090.048250.04867
2009.488499.464779.464779.50041
0.101440.005560.023720.02383
3009.230669.215279.215279.23837
0.063890.003710.015380.01543
4009.018579.007309.007309.02422
0.045710.002780.011270.01130
5008.960468.951508.951508.96495
0.036080.002230.008960.00898
np = 0.30
SELFQLFWLFPLF
1000.308170.306630.306630.30895
0.003220.000740.001540.00155
2000.304160.303400.303400.30454
0.001560.000370.000760.00076
3000.301850.301340.301340.30210
0.001020.000250.000500.00050
4000.302320.301940.301940.30251
0.000770.000190.000380.00038
5000.297770.297480.297480.29792
0.000600.000150.000300.00030
Table 9. Bayes estimates and posterior risks under uniform prior using β1 = 10, β2 = 12 and p = 0.45
nβ1 = 10
SELFQLFWLFPLF
10010.3935710.2896310.3413410.41992
0.109670.025000.052230.05269
20010.2323710.1812110.2067310.24525
0.052750.012500.025650.02576
30010.1460610.1122410.1291210.15455
0.034490.008330.016940.01699
40010.1575710.1321810.1448610.16394
0.025890.006250.012710.01274
50010.0324510.0123810.0224110.03748
0.020070.005000.010010.01003
nβ2 = 12
SELFQLFWLFPLF
10013.0469612.9164912.9814013.08003
0.288030.015000.065560.06614
20012.7968612.7328812.7647912.81297
0.137500.007500.032070.03221
30012.4386912.3972312.4179212.44910
0.086390.005000.020770.02083
40012.1478112.1174412.1326112.15543
0.061720.003750.015200.01524
50012.0665112.0423712.0544312.07255
0.048680.003000.012080.01210
np = 0.45
SELFQLFWLFPLF
1000.473950.469210.471570.47515
0.005000.001140.002380.00240
2000.466600.464260.465430.46718
0.002410.000570.001170.00117
3000.462660.461120.461890.46305
0.001570.000380.000770.00077
4000.463190.462030.462610.46348
0.001180.000290.000580.00058
5000.456110.455200.455650.45634
0.000920.000230.000460.00046
Table 10. Bayes estimates and posterior risks under Jeffreys prior using β1 = 10, β2 = 12 and p = 0.45
nβ1 = 10
SELFQLFWLFPLF
10010.3413410.2896310.2896310.36742
0.108020.024880.051710.05216
20010.2067310.1812110.1812110.21954
0.052350.012470.025520.02563
30010.1291210.1122410.1122410.13758
0.034310.008320.016880.01693
40010.1448610.1321810.1321810.15121
0.025790.006240.012680.01271
50010.0224110.0123810.0123810.02743
0.020010.005000.009990.01001
nβ2 = 12
SELFQLFWLFPLF
10012.9814012.9164912.9164913.01414
0.283700.014930.064910.06548
20012.7647912.7328812.7328812.78082
0.136470.007480.031910.03205
30012.4179212.3972312.3972312.42830
0.085960.004990.020700.02076
40012.1326112.1174412.1174412.14021
0.061490.003750.015170.01520
50012.0544312.0423712.0423712.06046
0.048530.003000.012050.01208
np = 0.45
SELFQLFWLFPLF
1000.471570.469210.469210.47275
0.004930.001130.002360.00238
2000.465430.464260.464260.46601
0.002390.000570.001160.00117
3000.461890.461120.461120.46227
0.001560.000380.000770.00077
4000.462610.462030.462030.46290
0.001180.000280.000580.00058
5000.455650.455200.455200.45588
0.000910.000230.000460.00046
Table 11. Bayes estimates and posterior risks under uniform prior using β1 = 10, β2 = 12 and p = 0.30
nβ1 = 10
SELFQLFWLFPLF
10010.6430210.5365910.5895310.66999
0.112300.025600.053480.05396
20010.4779510.4255610.4516910.49114
0.054010.012800.026260.02638
30010.3895610.3549310.3722210.39826
0.035310.008530.017340.01740
40010.4013510.3753510.3883310.40788
0.026510.006400.013020.01305
50010.2425010.2220210.2322510.24764
0.020550.005120.010250.01027
nβ2 = 12
SELFQLFWLFPLF
10012.9991212.8691312.9338013.03207
0.286970.014950.065320.06590
20012.7499412.6861912.7179912.76599
0.136990.007470.031950.03210
30012.3930812.3517712.3723912.40345
0.086070.004980.020690.02075
40012.1032712.0730112.0881212.11086
0.061490.003740.015150.01518
50012.0222611.9982212.0102312.02829
0.048500.002990.012030.01206
np = 0.30
SELFQLFWLFPLF
1000.315960.312800.314380.31677
0.003330.000760.001590.00160
2000.311060.309510.310280.31146
0.001600.000380.000780.00078
3000.308440.307410.307930.30870
0.001050.000250.000510.00052
4000.308790.308020.308400.30898
0.000790.000190.000390.00039
5000.304070.303470.303770.30423
0.000610.000150.000300.00030
Table 12. Bayes estimates and posterior risks under Jeffreys prior using β1 = 10, β2 = 12 and p = 0.30
nβ1 = 10
SELFQLFWLFPLF
10010.5895310.5365910.5365910.61624
0.110620.025470.052950.05342
20010.4516910.4255610.4255610.46481
0.053610.012770.026130.02624
30010.3722210.3549310.3549310.38088
0.035140.008520.017290.01734
40010.3883310.3753510.3753510.39484
0.026410.006390.012990.01301
50010.2322510.2220210.2220210.23737
0.020490.005110.010230.01025
nβ2 = 12
SELFQLFWLFPLF
10012.9338012.8691312.8691312.96642
0.282660.014870.064670.06524
20012.7179912.6861912.6861912.73395
0.135970.007450.031790.03193
30012.3723912.3517712.3517712.38273
0.085640.004970.020620.02068
40012.0881212.0730112.0730112.09569
0.061260.003730.015110.01514
50012.0102311.9982211.9982212.01624
0.048360.002990.012010.01203
np = 0.30
SELFQLFWLFPLF
1000.310240.308690.308690.31102
0.003240.000750.001550.00156
2000.306200.305440.305440.30659
0.001570.000370.000770.00077
3000.303870.303370.303370.30413
0.001030.000250.000510.00051
4000.304350.303970.303970.30454
0.000770.000190.000380.00038
5000.299770.299470.299470.29992
0.000600.000150.000300.00030
The simulation study indicates that by increasing the sample size the estimated values each parameter converges to the true value and the magnitude of corresponding posterior risks decreases. However, the posterior risks seem to be quite large for relatively larger values of the parameters. It can also be observed that all the parameters are over estimated with few exceptions. The extend of over estimation is more intensive for larger values of the parameters. This indicates that the posterior distributions are positively skewed. In comparison of priors, the performance of estimates under the Jeffreys prior seems better than those under uniform prior for each loss function and mixing weight. While, in case of loss functions, the estimates under quadratic loss function (QLF) are associated with the minimum risks. It is also interesting to note that the amount of risks under precautionary loss function (PLF) and weighted loss function (WLF) are converging to each other with increase in sample size. The posterior risks under QLF are approximately half of the risks under WLF and PLF. The increase in the value of mixing proportion p imposes positive impact on the performance of estimators of β1 and it negatively affects the performance of the estimators of β2 and vice versa. This is because the increasing value of p tend to increase the value of r1 (the number of observations selected from the Gumbel type II distribution having parameter β1), which will result in lesser posterior risks. The increasing values of the main parameters (β1and β2) are having a negative effect on the behavior of the estimators of mixing proportion p. The expressions for complete samples can simply be obtained by increasing the test termination time to unity. The risks associated with estimates under complete samples are expected to reduce as no information will be lost then.
Table 13. 95% posterior predictive intervals for β1 = 3,β2 = 6, and p = 0.30
nUniform
Lower LimitUpper LimitDifference
502.9536416.4091013.45546
1002.9316516.2869513.35530
2002.8754515.9747513.09929
3002.7949715.5276312.73266
4002.7296115.1645212.43490
5002.7113415.0630212.35168
nJeffreys
Lower LimitUpper LimitDifference
502.6582715.5886412.93037
1002.6384915.4726112.83412
2002.5879115.1760112.58810
3002.5154814.7512512.23577
4002.4566514.4062911.94964
5002.4402114.3098711.86966
From tables 13-16 it can be assessed that posterior predictions tend to be more accurate in larger samples. Increasing values of actual and weight parameter imposes negative impact on the performance of the predictions. It is interesting to note that the posterior predictive intervals are shorter in case of Jeffreys prior. This simply indicates the supremacy of Jeffreys prior over uniform prior. Anyhow, the results under the posterior predictive intervals are in accordance with the corresponding point estimation.
Table 14. 95% posterior predictive intervals for β1 = 3, β2 = 6, and p = 0.45
nUniform
Lower LimitUpper LimitDifference
503.0127116.7372813.72457
1002.9902816.6126913.62241
2002.9329616.2942413.36128
3002.8508715.8381812.98731
4002.7842115.4678112.68360
5002.7655715.3642812.59871
nJeffreys
Lower LimitUpper LimitDifference
502.7114415.9004213.18898
1002.6912615.7820613.09080
2002.6396715.4795312.83986
3002.5657915.0462712.48049
4002.5057814.6944212.18863
5002.4890114.5960712.10705
Table 15. 95% posterior predictive intervals for β1 = 6, β2 = 9, and p = 0.30
nUniform
Lower LimitUpper LimitDifference
504.4304622.9727418.54228
1004.3974822.8017318.40426
2004.3131822.3646518.05147
3004.1924621.7386817.54622
4004.0944221.2303217.13590
5004.0670221.0882317.02121
nJeffreys
Lower LimitUpper LimitDifference
503.9874121.8241017.83669
1003.9577321.6616517.70392
2003.8818621.2464217.36455
3003.7732120.6517516.87853
4003.6849820.1688116.48383
5003.6603120.0338216.37350
Table 16. 95% posterior predictive intervals for β1 = 3,β2 = 6, and p = 0.30
nUniform
Lower LimitUpper LimitDifference
504.8735026.6483821.77488
1004.8372326.4500121.61279
2004.7445025.9429921.19849
3004.6117125.2168720.60516
4004.5038624.6271720.12331
5004.4737224.4623519.98863
nJeffreys
Lower LimitUpper LimitDifference
504.3861525.3159620.92981
1004.3535025.1275120.77401
2004.2700524.6458420.37579
3004.1505423.9560219.80549
4004.0534823.3958219.34234
5004.0263523.2392319.21288

7. Analysis under Real Life Data

The real life data (following Gumbel distribution) regarding monthly wind speed in Cameron Highland from year 2004-2006 presented by Zaharimi et al.[18] is used to illustrate the applicability of the results obtained in previous sections.
Table 17. Bayes estimates and risks for real life data
Priorβ1
SELFQLFWLFPLF
Uniform3.189553.000003.094223.23672
0.309340.029840.095330.09435
Jeffreys3.094222.338673.000003.14152
0.300980.031090.094220.09460
β2
SELFQLFWLFPLF
Uniform3.580113.367353.473113.63306
0.347220.033500.107000.10590
Jeffreys3.473112.625043.367353.52620
0.337840.034900.105760.10619
p = 0.30
SELFQLFWLFPLF
Uniform0.325460.306120.315740.33028
0.031570.003050.009730.00963
Jeffreys0.315740.238640.306120.32056
0.030710.003170.009610.00965
Table 18. Bayes estimates and risks for real life data
Priorβ1
SELFQLFWLFPLF
Uniform3.282053.087003.183963.33059
0.318310.030710.098090.09708
Jeffreys3.183962.406503.087003.23263
0.309710.031990.096960.09735
β2
SELFQLFWLFPLF
Uniform3.303463.107143.204733.35232
0.320390.030910.098730.09772
Jeffreys3.204732.422203.107143.25372
0.311730.032200.097590.09798
p = 0.45
SELFQLFWLFPLF
Uniform0.471920.443880.457820.47890
0.045770.004420.014100.01396
Jeffreys0.457820.346030.443880.46482
0.044530.004600.013940.01400
The real life data replicated the patterns observed in the simulation study. The minimum amount of risks has been observed for the estimates under the assumption of Jeffreys prior using quadratic loss function.

8. Conclusions

The purpose of the article is to find out the appropriate combination of prior distribution and loss function to estimate the parameters of two-component mixture of Gumbel type II distribution. The parameters have been estimated under the assumption of two non-informative priors and four loss functions (symmetric and asymmetric). The posterior predictive intervals have also been evaluated. From the findings of the study it can be concluded that in order to estimate the said parameters, the use of Jeffreys prior and quadratic loss function can be preferred.

References

[1]  A. R. Chechile, “Bayesian analysis of Gumbel distributed data”, Communications in Statistics - Theory and Methods, vol.30, no.3, pp. 211-224, 2001.
[2]  G. Corsini, F. Gini, M. V. Gerco, et al. “Cramer-Rao bounds and estimation of the parameters of the Gumbel distribution”, IEEE, vol.31, no.3, pp. 1202-1204, 2002.
[3]  A. Mousa, “Bayesian estimation, prediction and characterization for the Gumbel model based on records”, Statistics, vol.36, no.1, pp. 58-69, 2002.
[4]  D. Koutsoyiannis, and G. Baloutsos, “Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences”, Natural Hazards, vol.22, no.1, pp. 29-48, 2000.
[5]  Rasmussen, P. F., and Gautam, N. “Alternative PWM-estimators of the Gumbel distribution. Journal of Hydrology”, vol.280, no.1-4, pp. 265-271, 2003.
[6]  I. Malinowka, and D. Szynal, “On characterization of certain distributions of kth lower (upper) record values”, Applied Mathematics and Computation, vol.202, no.1, pp. 338-347, 2008.
[7]  S. Nadarajah, and S. Kotz, “The beta Gumbel distribution”, Math. Probab. Eng., vol.10, 323-332, 2004.
[8]  B. Miladinovic, and P. C. Tsokos, “Sensitivity of the Bayesian reliability estimates for the modified Gumbel failure model”, International Journal of Reliability, Quality and Safety Engineering (IJRQSE), vol.16(40), pp. 331-341, 2009.
[9]  Y. Park, S. Sheetlin, and L. J. Spouge, “Estimating the Gumbel scale parameter for local alignment of random sequences by importance sampling with stopping times”, Ann. Statist., vol.37, no.6A, pp. 3697-3714, 2009.
[10]  H. J. Heo, and D. J. Salas, “Estimation of quantiles and confidence intervals for the log-Gumbel distribution”, Stochastic Hydrology and Hydraulics, vol.10, no.3, pp. 187-207, 2010.
[11]  E. M. Thompson, J. B. Hewlett, and R. M. Vogel, “The Gumbel hypothesis test for left censored observations using regional earthquake records as an example”, Nat. Hazards Earth Syst. Sci., vol.11, pp. 115-126, 2011.
[12]  M. Saleem, and M. Aslam, "Bayesian Analysis of the Two Component Mixture of the Rayleigh Dist. With the Uniform and the Jeffreys Priors", J. of Applied Statistical Science, Vol.16, no.4, pp.105-113, 2008.
[13]  M. Saleem, M. Aslam, and P. Economou, "On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample", Journal of Applied Statistics, vol.37, no.1, pp. 25-40, 2010.
[14]  M. Y. Majeed, and M. Aslam, “Bayesian analysis of the two component mixture of inverted exponential distribution under quadratic loss functions”, International Journal of Physical Sciences, vol.7, no.9, pp. 1424-1434, 2012.
[15]  S. M. A. Kazmi, M. Aslam, and S. Ali "On the Bayesian estimation for two component mixture of maxwell distribution, Assuming Type I Censored Data", International Journal of Applied Science and Technology (IJAST), vol.2, no.1, pp. 197-218, 2012.
[16]  P. S. Laplace, “Theorie analytique des probabilities”, Veuve Courcier Paris, 1812.
[17]  H. Jeffreys, “Theory of Probability”, 3rd edn. Oxford University Press, pp. 432, 1961.
[18]  A. Zaharimi, S. Najid, and A. Mahir, “Analyzing Malaysian wind speed data using statistical distribution”, Proceedings of the 4th IASME / WSEAS Inter. Conf. on Energy & Environment, Malysia, pp. 363-370, 2009.