[1] | Annis, D. H., “A note on quasi-likelihood for exponential families”, Statistics and Probability Letters, 77, 431-437, 2006. |
[2] | Dempster, A., Laird, N., and Rubin, D., “Maximum Likelihood from incomplete data via the EM algorithm", Journal of the Royal Statistical Society., Series B, 39, 1-38, 1977. |
[3] | Diggle, P. J., Liang, K-Y., and Zeger, S. L., “Analysis of Longitudinal Data”, Clarendon Press, Oxford, UK, 1994. |
[4] | Dobson, A. J., “An introduction to generalized linear models”, Chapman and Hall, London, UK, 1990. |
[5] | Dunlop, D. D., “Regression for longitudinal data: a bridge from least squares regression”, The American Statistician, 48, 299-303, 1994. |
[6] | Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., “Introducing Markov Chain Monte Carlo", Chapter 1, In : Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.), Markov Chain Monte Carlo in practice, Chapman and Hall, London, 1995. |
[7] | Komarek, A., and Lesaffre, E., “Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution”, Computational Statistics and Data Analysis, 52, 3441-3458, 2008. |
[8] | Laird, N. M., and Ware, J. H., “Random effects models for longitudinal data”, Biometrics, 38, 963-974, 1982. |
[9] | Lee, Y., Nelder, J. A., and Pawitan, Y., “Generalized Linear Models with Random Effects: Unified Analysis via H-Likelihood, Chapman and Hall, London, UK, 2006. |
[10] | Li, E., Zhang, D., and Davidian, M. (2004), “Conditional estimation for generalized linear models when covariates are subject-specific parameters in a mixed model for longitudinal measurements", Biometrics, 60, 1-7, 2004. |
[11] | Liang, K-Y., and Zeger, S. L., “Longitudinal data analysis using generalized linear models", Biometrika, 73, 13-22, 1986. |
[12] | McCullagh, P., “Quasi-Likelihood functions", The Annals of Statistics, 11, 59-67, 1983. |
[13] | McCullagh, P., and Nelder, J. A., “Generalized linear models”, 2nd edition, Chapman and Hall, London, UK, 1989. |
[14] | McCulloch, C. E., “Generalized Linear Mixed Models”, NSF-CBMS Regional Conference Series in Probability and Statistics, 7, Institute of Mathematical Statistics, 2003. |
[15] | McCulloch, C. E., and Searle, S. R., “Generalized, Linear, and Mixed Models”, John Wiley & Sons, Inc., New York, USA, 2001. |
[16] | McGilchrist, C. A., “Estimation in generalized mixed models”, Journal of the Royal Statistical Society, Series B, 56, 61-69, 1994. |
[17] | McLachlan, J., and Krishnan, T., “The EM algorithm and extensions”, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, USA, 1997. |
[18] | Nelder, J., and Wedderburn, R., “Generalized Linear Models”, Journal of the Royal Statistical Society A, 135, 370 – 384, 1972. |
[19] | Proust, C., and Jacqmin-Gadda, H., “Estimation of linear mixed models with a mixture of distribution for the random effects”, Computer Methods and Programs in Biomedicine, 78, 165-173, 2005. |
[20] | Robert, C., “Methodes de Monte Carlo par Chaines de Markov, Economica, Paris, 1996. |
[21] | Roberts, G. O., “Markov Chain concepts related to sampling algorithm”, Chapter 3, In : Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.), Markov Chain Monte Carlo in practice, Chapman and Hall, London, UK, 1996. |
[22] | Steele, B., “A modified EM algorithm for estimation in generalized mixed models”, Biometrics, 52, 1295-1310, 1996. |
[23] | Tutz, G., and Kauermann, G., “Generalized linear random effects models with varying coefficients”, Computational Statistics and Data Analysis, 43, 13-28, 2003. |
[24] | Wedderburn, R. W., “Quasi-likelihood functions, generalized linear models and the Gauss-Newton method”, Biometrika, 61, 439-447, 1974. |
[25] | Zeger, S. L., and Liang, K-Y., “Longitudinal data analysis for discrete and continuous outcomes”, Biometrics, 42, 121-130, 1986. |
[26] | Zeger, S. L., Liang, K-Y., and Albert, P. S., “Models for longitudinal data: a generalized estimating equation approach”, Biometrics, 44, 1049 – 1060, 1988. |
[27] | Zeger, S. L., Liang, K-Y., and Self, S. G., “The analysis of binary longitudinal data with time-independent covariates”, Biometrika, 72, 31-38, 1985. |