[1] | Compton, D. M. (2001). Are memories for stimulus-stimulus associations or stimulus-response associations responsible for serial-pattern learning in rats? Physiology & Behavior, 72, 643-652. doi:10.1016/S0031-9384(01)00429-2 |
[2] | Fountain, S. B., Rowan, J. D., & Carman, H. M. (2007). Encoding structural ambiguity in rat serial pattern: The role of phrasing. International Journal of Comparative Psychology, 20, 25-34. |
[3] | Capaldi, E. J., & Miller, R. M. (2004). Serial learning in rats: A test of three hypotheses. Learning & Motivation, 35, 7181. doi:10.1016/S0023-9690(03)00043-2 |
[4] | Capaldi , E. J. (1985). Anticipation and remote associations: A configural approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 444-449. doi:10.1037//0278-7393.11.3.444 |
[5] | Capaldi, E. J., Alptekin, S., Miller, D. J., & Birmingham, K. M. (1997). Is discriminative responding in reward outcome serial learning mediated by item memories or position cues? Learning and Motivation, 28, 153-169. doi:10.1006/lmot. 1996.0964 |
[6] | Burns, R. A., Dunkman, J. A., Jr., & Detloff, S. L. (1999). Ordinal position in the serial learning of rats. Animal Learning & Behavior, 27, 272-279. doi:10.3758/BF03199725 |
[7] | Burns, R. A., Hulbert, L. G., & Cribb, D. (1990). A test for order relevance in a three-element serial learning task. Journal of General Psychology, 117, 91–98. doi:10.1080/ 00221309.1990.9917776 |
[8] | D'Amato, M. R., & Columbo, M. (1988). Representation of serial order in monkeys (Cebus appella). Journal of Experimental Psychology: Animal Behavior Processes, 14, 131-139. doi:10.1037//0097-7403.14.2.131 |
[9] | Cohen, N.J., & Eichenbaum, H., 1993. Memory, amnesia, and the hippocampus. Cambridge, MA: MIT Press. |
[10] | Kesner, R. P., & Rogers, J. (2004). An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems, and underlying processes. Neurobiology of Learning and Memory, 82, 199-215. doi:10.1016/j.nlm.2004.05.007 |
[11] | Mishkin, M., & Petri, H. L. (1984) Memories and habits: Some implications for the analyses of learning and retention. In L. R. Squire & N. Butters (Eds.), Neuropsychology of Memory pp. 287-296. New York: Guilford. |
[12] | Packard, M. G. (2008). Neurobiology of procedural learning in animals. In H. Eichenbaum (Ed.), Learning and memory: A comprehensive reference (Vol. 3), pp. 341-356. San Diego, CA: Academic Press. |
[13] | Packard, M. G. (2010). Role of basal ganglia in habit learning and memory: Rats, monkeys, and humans. In H. Steiner & K. Y. Tseng (Eds.), Handbook of behavioral neuroscience (Vol. 20), pp. 561-569. Oxford, UK: Elsevier. |
[14] | Ranganath, C., & Blumenfeld, R. S. (2008). Prefrontal cortex and memory. In H. Eichenbaum (Ed.), Learning and memory: A comprehensive reference (Vol. 3), pp. 261-279. San Diego, CA: Academic Press. |
[15] | Dalley, J. W., Cardinal, R. N., & Robbins, T.W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771-784.doi:10.1016/j.neubiorev.2004.09.006 |
[16] | Goldman-Rakic, P. S. (1996). The prefrontal landscape: implication of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 445-453. doi:10.1098/rstb.1996.0129 |
[17] | Miller, E .K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59-65. doi:10.1038/ 35036228 |
[18] | Robbins, T. W., & Crockett, M. J. (2010). Role of central serotonin in impulsivity and compulsivity: Comparative studies in experimental animals and humans. In C. P. Müller & B. L. Jacobs (Eds.), Handbook of the behavioral neurobiology of serotonin pp. 415-427. San Diego, CA: Academic Press. |
[19] | Del’Guidice, T., Nivet, E., Escoffier, G., Baril, N., Carverni, J.-P., & Roman, F. S. (2009). Perseveration related to frontal lesion in mice using the olfactory H-maze. Behavioural Brain Research, 205, 226-233. doi:10.1016/j.bbr.2009.08.007 |
[20] | Kolb B. (1990). Prefrontal cortex. In B. Kolb & R. C. Tees (Eds.). The cerebral cortex of the rat pp. 437-458. Cambridge, MA: MIT Press. |
[21] | Able, J. A., Gudelsky, G. A., Vorhees, C. V., & Williams, M. T. (2006). 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biological Psychiatry, 59, 1219-1226. doi:10.1016/ j.biopsych.2005.09.006. |
[22] | Arias-Cavieres, A., Rozas, C., Reyes-Parada, M., Barrera, N., Pancetti, F., Loyola, S., Lorca, R. A., Zeise, M. L., & Morales, B. (2010). MDMA (“ecstasy”) impairs learning in the Morris Water Maze and reduces hippocampal LTP in young rats. Neuroscience Letters, 469, 375-379. doi:10.1016/j.neulet. 2009.12.031 |
[23] | Sprague, J. E., Preston, A. S., Leifheit, M., & Woodside, B. (2003). Hippocampal serotonergic damage induced by MDMA (ecstasy): Effects on spatial learning. Physiology & Behavior, 79, 281-287. doi:10.1016/S0031-9384(03)00092-1 |
[24] | Vorhees, C. V., Reed, T. M., Skelton, M. R., & Williams, M. T. (2004). Exposure to3,4-methylenedioxymethamphetamine (MDMA) on postnatal days 11–20 induces reference but not working memory deficits in the Morris water maze in rats: implications of prior learning. International Journal of Developmental Neuroscience, 22, 247-259.doi:10.1016/j.ijdevneu.2004.06.003 |
[25] | Vorhees, C. V., Schaefer, T. L., & Williams, M. T. (2007). Developmental effects of+-methylenedioxymethamphetamine (MDMA) on spatial vs. path integration learning: Effects of dose distribution. Synapse, 61, 488-499. |
[26] | Vorhees, C. V., Schaefer, T. L., Skelton, M. R., Grace, C. E., Herring, N. R., & Williams, M. T. (2009). (+/-)3,4-Methylenedioxymethamphetamine (MDMA) dose-dependently impairs spatial learning in the Morris Water Maze after exposure of rats to different five-day intervals from birth to postnatal day twenty. Developmental Neuroscience, 31, 107-120. doi:10.1159/000207499 |
[27] | Fox, H. C., Toplis, A. S., Turner, J. J. D., & Parrott, A. C. (2001). Auditory verbal learning in drug-free ecstasy polydrug users. Human Pharmacology: Clinical Experimental, 16, 613-618. doi:10.1002/hup.344 |
[28] | Heffernan, T. M., Jarvis, H., Rodgers, J., Scholey, A. B., & Ling, J. (2001). Prospective memory, everyday memory failure and central executive function in recreational users of ecstasy. Human Psychopharmacology, 16, 607-612. doi:10.1002/hup.349 |
[29] | Heffernan, T. M., Ling, J., & Scholey, A. B. (2001). Subjective ratings of prospective memory deficits in MDMA (‘ecstasy’) users. Human Psychopharmacology, 16, 339-344. doi:10.1002/hup.290 |
[30] | Wareing M., Fisk J. E., & Murphy, P. N. (2000). Working memory deficits in current and previous users of MDMA (“ecstasy”). British Journal of Psychology, 91, 181-188. doi:10.1348/000712600161772 |
[31] | Skelton, M. R., Able, J. A., Grace, C. E., Herring, N. R., Schaefer, T. L., Gudelsky, G. A., Vorhees, C. V., & Williams, M. T. (2008). (+)-3,4-methylenedioxymethamphetamine treatment in adult rats impairs path integration learning: A comparison of single vs once per week treatment for 5 weeks. Neuropharmacology, 55, 1121-1130.doi:10.1016/j.neuropharm.2008.07.006 |
[32] | Battaglia, G., Yeh, S. Y., O’Hearn, E., Molliver, M. E., Kuhar, M. J., & DeSouza, E. B. (1987).3,4-Methylenedioxymethamphetamine and 3,4-methyl¬enedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurementof[3H]paroxetine-labeled serotonin uptake sites. Journal of Pharmacology and Experimental Therapeutics, 242, 911-916. |
[33] | Fischer, C., Hatzidimitriou, G., Wlos, J. Katz, & J., Ricaurte, G. (1995). Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). Journal of Neuroscience, 15, 5476-5485. |
[34] | Hatzidimitriou, G., McCann, U. D., & Ricaurte, G. A. (1999). Altered serotonin innervation patterns in the forebrain of monkeys treated with(+/-)3,4-methylenedioxymethamphetamine seven years previously: Factors influencing abnormal recovery. Journal of Neuroscience, 19, 5096-5107. |
[35] | Lew, R., Sabol, K. E., Chou, C., Vosmer, G. L., Richards, J., & Seiden, L. S. (1996).Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part II: radioligand binding and autoradiography studies. Journal of Pharmacology and Experimental Therapeutics, 276, 855-865. |
[36] | Scanzello, C. R., Hatzdimitriou, G., Martello, A. L., Katz, J. L., & Ricuarte, G. A. (1993). Response of central serotonergic neurons to (+)3,4-methylenedioxymethamphetamine (MDMA) injury: Observations in rats. Journal of Pharmacology and Experimental Therapeutics, 264, 1484- 1491. |
[37] | Shulgin A., & Carter, M. F. (1980).N,N-Diisopropyltryptamine (DIPT) and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT). Two orally active tryptamine analogs with CNS activity. Communications in Psychopharmacology, 4, 363-369. |
[38] | Ikeda, A., Sekiguchi, K., Fujita, K., Yamadera, H., & Kog, Y. (2005). 5-methoxy-N,N-diisopropyltryptamine-induced flashbacks. American Journal of Psychiatry, 162, 815. doi:10.1176/appi.ajp.162.4.815 |
[39] | Wilson, J. M., McGeorge, F., Smolinske, S., & Meatherall, R. (2005). A foxy intoxication. Forensic Science International, 148, 31-36. doi:10.1016/j.forsciint.2004.04.017 |
[40] | United States Drug Enforcement Administration (2003). Schedules of controlled substances: Temporary placement of alpha-methyltryptamine and 5-methoxy-N,N-diisopropyltryptamine into Schedule I. Final rule. Federal Register, 68(65), 16427-16430. |
[41] | Compton, D. M., Selinger, M. C., Testa, E. K., & Larkins, K. D. (2006). An examination of the effects of 5-methoxy- N,N-diisopropyltryptamine hydrochloride (Foxy) on cognitive development in rats. Psychological Reports, 98, 651-661. |
[42] | Compton, D. M., Selinger, M. C., Westman, E., & Otero, P. (2011). Differentiation of MDMA or 5-MeO-DIPT induced cognitive deficits in rat following adolescent exposure. Psychology & Neuroscience, 4, 157-169.doi:10.3922/j.psns.2011.1.018 |
[43] | Skelton, M. R., Schaefer, T. L., Herring, N. R., Grace, C. E., Vorhees, C.V., Williams, M. T. (2009). Comparison of the developmental effects of 5-methoxy-N,N-diisopropyltryptamine (Foxy) to (±)-3, 4-methylenedisoxymethamphetamine (ecstasy) in rats. Psychopharmacology, 204, 287-297. doi:10.1007/s00213-009-1459-x |
[44] | Adriani W., & Laviola, G. (2004). Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behavioral Pharmacology, 15, 341-352. doi:10.1097/00008877-200409000-00005 |
[45] | Tirelli, E., Laviola, G., & Adriani, W. (2000). Ontogenesis of behavioral sensitization and conditioned place preference in laboratory rodents. Neuroscience and Biobehavioral Reviews, 23, 163-178. doi:10.1016/S0149-7634(03)00018-6 |
[46] | Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417-463. doi:10.1016/S0149-7634(00)00014-2 |
[47] | National Research Council. (1996). Guide for the care and use of laboratory animals. Washington, DC: National Academic Press. |
[48] | Seago, J. D., Ludvigson, H. W., & Remley, N. R. (1970). Effects of anosmia on apparent double-alternation in the rat. Journal of Comparative and Physiological Psychology, 71, 435-442. doi:10.1037/h0029116 |
[49] | Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press. |
[50] | Krettek, J. E., & Price, J. L. (1977). The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat and cat. Journal of Comparative Neurology, 172, 157-192. |
[51] | Thomas, R. K., Jr., & Peacock, L. J. (1965). A method of measuring brain lesions. Psychonomic Science, 3, 184. |
[52] | Chapin, D.S., Lookingland, K.J., & Moore, K. E. (1994). Effects of LC mobile phase composition on retention times for biogenic amines, and their precursors and metabolites. Current Separations, 7, 68-70. |
[53] | Winer, B. J., Brown, D. R., & Michels, K. M (1991). Statistical principles in experimental design (3rd ed.). New York: McGraw-Hill. |
[54] | Compton, D. M. (1991). Serial learning: A review of the behavioral and physiological research with the rat. Neuroscience and Biobehavioral Reviews, 15, 363-374. doi:10.1016/S0149-7634(05)80029-6 |
[55] | Botwinick. J. (1978). Aging and behavior. New York: Springer. |
[56] | Gage, F. H., Chen, K. S.,Buzsáki, G., & Armstrong, D. (1988). Experimental approaches to age-related cognitive impairments. Neurobiology of Aging, 9, 645-655. doi:10.1016/S0197-4580(88)80129-5 |
[57] | Kesner, R. P., & Churchwell, J. C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiology of Learning and Memory, 96, 417-431. doi:10.1016/j.nlm.2011.07.002 |
[58] | Muller, M. D., & Fountain, S. B. (2010). Concurrent cognitive processes in rat serial pattern learning: Item memory, serial position, and pattern structure. Learning and Motivation, 41, 252-272. doi:10.1016/j.lmot.2010.08.003 |
[59] | Nissen, M. J., Knopman, D. S., & Schacter, D. L. (1987). Neurochemical dissociation of memory systems. Neurology, 37, 789–794. doi:10.1212/WNL.37.5.789 |
[60] | Knopman, D. S., & Nissen, M. J. (1987). Implicit learning in patients with probable Alzheimer’s disease. Neurology, 37, 784–788. doi:10.1212/WNL.37.5.784 |
[61] | Knopman, D. S., & Nissen, M. J. (1991). Procedural learning is impaired in Huntington’s disease: Evidence from the serial reaction time task. Neuropsychologia, 29, 245–254. doi:10.1016/0028-3932(91)90085-M |
[62] | Kolb, B., & Wishaw, I. Q. (2009). Fundamentals of human neuropsychology (6th ed.). New York: Worth. |
[63] | Heindel, W. C., Butters, N., & Salmon, D. P. (1988). Impaired learning of a motor skill in patients with Huntington’s disease. Behavioral Neuroscience, 102, 141–147. doi:10.1037//0735-7044.102.1.141 |
[64] | Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558-584. doi:10.1037//0033-295X.105.3.558 |
[65] | Fountain, S. B., Rowan, J. D., Kelley, B. M., Wiley, A. R., & Nolley, E. P. (2008). Adolescent exposure to nicotine impairs adult serial pattern learning in rats. Experimental Brain Research, 187, 651-656. doi: 10.1007/s00221-008-1346-4 |
[66] | Kesner R. P. (1997). Neurobiological views of memory. In J. L. Martinez & R. P. Kesner (Eds.), Learning and memory: A biological view pp. 399-438. San Diego, CA: Academic Press. |
[67] | McDonald R.J., & White N. M. (1995). Hippocampal and nonhippocampal contributions to place learning in rats. Behavioral Neuroscience, 109, 579-593. doi:10.1037//0735- 7044.109.4.579 |
[68] | Packard, M. G., & Teather, L. A. (1998). Amygdala modulation of multiple memory systems: Hippocampus and caudate-putamen. Neurobiology of Learning and Memory, 69, 163-203. doi:10.1006/nlme.1997.3815 |
[69] | Salinas, J. A., & White, N. M. (1998). Contributions of the hippocampus, amygdala, and dorsal striatum to the response elicited by reward reduction. Behavioral Neuroscience, 112, 812-826. doi:10.1037//0735-7044.112.4.812 |
[70] | Uylings, H. B. M., Groenewegen, H.J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Ressearch, 146, 3-17. doi:10.1016/j.bbr.2003.09.028 |
[71] | Clarke, H. F., Walker, S. C., Crofts, H. S., Dalley, J. W., Robbins, T. W., & Roberts, A. C. (2005). Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. Journal of Neuroscience, 25, 532-538. doi:10.1523/ JNEUROSCI.3690-04.2005 |
[72] | Clarke, H. F., Dalley, J. W., Crofts, H. S., Robbins, T. W., & Roberts, A. C. (2004). Cognitive inflexibility after prefrontal serotonin depletion. Science, 304, 878-880. doi:10.1126/science.1094987 |
[73] | Borg, J., Henningsson, S., Saijo, T., Inoue, M., Bah, J., Westberg, L., Lundberg, J., Jovanovic, H., Andree, B., Nordstrom, A. L., Halldin, C., Eriksson, E., & Farde, L. (2009). Serotonin transporter genotype is associated with cognitive performance but not regional 5-HT1A receptor binding in humans. International Journal of Neuropsychopharmacology, 12, 783-792. doi:10.1017/S1461 145708009759 |
[74] | Piper, B. J., Fraiman, J. B., Owens, C. B., Ali, S. F., & Meyer, J. S. (2008). Dissociation of the neurochemical and behavioral toxicology of MDMA (‘Ecstasy’) by Citalopram. Neuropsychopharmacology, 33, 1192-1205.doi:10.1038/sj.npp.1301491 |
[75] | Skelton, M. R., Williams, M. T., & Vorhees, C. V. (2006). Treatment with MDMA from P11-20 disrupts spatial learning and path integration learning in adolescent rats but only spatial learning in older rats. Psychopharmacology (Berlin), 189, 307-318. doi:10.1007/s00213-006-0563-4 |
[76] | Compton, D. M., & Selinger, M. C. (2012). Lifespan neuropsychological assessment of MDMA and 5-MeO-DIPT following exposure during adolescence. Submitted. |
[77] | Williams, M. T., Herring, N. R., Schaefer, T.L., Skelton, M. R., Campbell, N. G., Lipton, J. W., McCrea, A. E., & Vorhees, C. V. (2007). Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘Foxy’) to adult rats: A new drug of abuse. Neuropsychopharmacology, 32, 1401-1420. doi:10.1038/sj.npp.1301232 |
[78] | Rice D., & Barone, Jr., S. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental Health Perspectives, 108(Suppl 3), 511-533.doi:10.1289/ehp.00108s3511 |
[79] | Teicher, M. H., & Andersen, S. L. (1999, October). Limbic serotonin turnover plunges during puberty. In: Poster presented at the Meeting of the Society for Neuroscience, Miami Beach, FL. |
[80] | Morilak, D. A., & Ciaranello, R. D. (1993). Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience, 55, 869-880. |
[81] | Morley-Fletcher, S., Bianchi, M., Gerra, G., & Laviola, G. (2002). Acute and carryover effects in mice of MDMA (“ecstasy”) administration during periadolescence. European Journal of Pharmacology, 448, 31-38. doi:10.1016/S0014- 2999(02)01904-0 |
[82] | Stone, D. M., Hanson, G. R., & Gibbs, J. W. (1987). Difference in the central serotonergic effects of methylenedioxymethamphetamine (MDMA) in mice and rats, Neuropharmacology, 26, 1657-1666. |
[83] | Fone, K. C. F., Beckett, S. R. G., Topham, I. A., Swettenham, J., Ball, M., & Maddocks, L. (2002). Long-term changes in social interaction and reward following repeated MDMA administration to adolescent rats without accompanying serotonergic neurotoxicity. Psychopharmacology, 159, 437-444. doi:10.1007/s00213-001-0931-z |
[84] | Battaglia, G., Yeh, S. Y., & DeSouza, E. B. (1988). MDMA-induced neurotoxicity: Parameters of degeneration and recovery of brain serotonin neurons. Pharmacology, Biochemistry, and Behavior, 29, 269-274. doi:10.1016/0091- 3057(88)90155-4 |
[85] | Steele, T. D., Nichols, D. E., & Yim, G. K. (1989). MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacology, Biochemistry, and Behavior, 34, 223-227. doi:10.1016/0091-3057(89)90303-1 |
[86] | Wang, X., Baumann, M. H., Xu, H., Morales, M., & Rothman, R. B. (2005). (+)-3,4-Methylenedioxymethamphetamine administration to rats does not decrease levels of the serotonin transporter protein or alter its distribution between endosomes and the plasma membrane. Journal of Pharmacology and Experimental Therapeutics, 314, 1002-1012. doi:10.1124/ jpet.105.088476 |
[87] | Wang, X., Baumann, M. H., Xu, H., & Rothman, R. B. (2004). 3,4-methylenedioxymethamphetamine (MDMA)administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 53, 240–248. doi:10.1002/syn.20058 |
[88] | O’Callaghan, J. P., & Miller, D. B. (1993). Quantification of reactive gliosis as an approach to neurotoxicity assessment. NIDA Research Monographs, 136, 188-212. |
[89] | Olivier, J., Cools, A., Ellenbroek, B., Cuppen, E., & Homberg, J. (2010). The serotonin transporter knockout rat: A review. In A. V. Kalueff & J. L. LaPorte (Eds.), Experimental models in serotonin transporter research pp. 170-213. Cambridge, UK: Cambridge University Press. |
[90] | Parrott, A. C. (2002). Recreational Ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacology, Biochemistry, and Behavior, 71, 837-844. doi:10.1016/S0091-3057(01)00711-0 |
[91] | Drugs-Forum (2012). Retrieved July 12, 2012, from http://www.drugs-forum.com/forum/index.php |
[92] | My sister has been using cocaine & ecstasy. (2012). Retrieved July 12, 2012, fromhttp://www.thegooddrugsguide.com/ecstasy/faq.htm#13 |
[93] | Nakagawa, T., & Kaneko, S. (2008). Neuropsychotoxicity of abused drugs: Molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3,4-methylenedioxymethamphetamine (Ecstasy), and 5- methoxy-N,N-diisopropyltryptamine (Foxy). Journal of Pharmacological Sciences, 106, 2-8.doi:10.1254/jphs.FM0070141 |
[94] | Green, A. R., Mechan, A. O., Elliott, J. M., O’Shea, E., & Colado, M. I. (2003). The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacological Reviews, 55, 463-508. doi:10.1124/pr.55.3.3 |