| [1] | A. Dissanayake, J. Allnutt and F. Haidara, ‘A prediction model that combines rain attenuation and other propagation impairments along Earth–satellite paths’, IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, pp. 1546–1558, 1997. |
| [2] | D. Chakraborty, ‘VSAT communications networks: An overview’, Communications Magazine, Vol. 26, No. 5, pp. 10–24, 1988. doi: 10.1109/35.449. |
| [3] | G. Maral and J. M. Restrepo, ‘Satellite communications: fundamentals and future trends’, International Journal of Satellite Communications and Networking, Vol. 22, No. 1, pp. 3–19, 2004. doi: https://doi.org/10.1002/sat.762. |
| [4] | J. S. Ojo, M. O. Ajewole and S. K. Sarkar, ‘Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over Nigeria’, Electromagnetics Research B, Vol. 5, pp. 207–223, 2008. doi: 10.2528/PIERB08021201. |
| [5] | J. S. Ojo and O. Falodun, ‘NECOP propagation experiment: Rain-rate distribution observations and prediction model comparisons’, International Journal of Antennas and Propagation, Vol. 2012, No. 913596, 2012. https://doi.org/10.1155/2012/913596. |
| [6] | W. C. Daugherity, B. Rathakrishnan and J. Yen, ‘Performance evaluation of a self-tuning fuzzy controller’, In Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 389–397, 1992. San Diego, CA. |
| [7] | I. Adegbindin, P. Owolawi and M. Odhiambo, ‘Intelligent weather awareness technique for mitigating propagation impairment at SHF and EHF satellite network system in a tropical climate’, SAIEE Africa Research Journal, Vol. 107, No. 3, pp. 136–145, 2016. |
| [8] | R. Z. Dhafer, S. Thulfiqar, A. Aldeen and A. Al-Wahab, ‘Simplified the QoS factor for the ad hoc network using fuzzy technique’, International Journal of Communications, Network and System Sciences, Vol. 6, pp. 381–387, 2013. doi: https://doi.org/10.4236/ijcns.2013.69041. |
| [9] | M. W. Eyob and D. D. Feyisa, ‘Enhanced adaptive code modulation for rainfall fade mitigation in Ethiopia’, EURASIP Journal on Wireless Communications and Networking, Vol. 2022, No. 19, 2022. https://doi.org/10.1186/s13638-021-02085-0. |
| [10] | R. K. Crane, ‘Prediction of the effects of rain on satellite communication systems’, Proceedings of the IEEE, Vol. 65, No. 3, pp. 456–474, 1977. doi: https://doi.org/10.1109/PROC.1977.10522. |
| [11] | K. Harb, A. Srinivasan, B. Cheng and C. Huang, ‘Prediction method to maintain QoS in weather-impacted wireless and satellite networks’, In Proceedings of the IEEE international conference on Systems, Man and Cybernetics (SMC), pp. 4008–4013, 2007. doi: https://doi.org/10.1109/ICSMC.2007.4414255. |
| [12] | K. Harb, A. Srinivasan, B. Cheng and C. Huang, ‘QoS in weather-impacted satellite networks’, In proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. (PACRIM 2007) pp. 178–181, 2007. |
| [13] | K. Harb, A. Srinivasan, B. Cheng and C. Huang, ‘Intelligent weather aware scheme for satellite systems’, IEEE International Conference on Communications (ICC), pp. 1930–1936, 2008. doi: 10.1109/ICC.2008.370. |
| [14] | K. Harb, F. R. Yu, P. Dakhal and A. Srinivasan, ‘An intelligent QoS control system for satellite networks based on Markovian weather prediction’, IEEE Vehicular Technology Conference (VTC 2010- Fall), Ottawa, Ontario, Canada, pp. 1–5, 2010. doi: 10.1109/VETECF.2010.5594097. |
| [15] | H. Nomura, I. Hayashi and N. Wakami, ‘A learning method of fuzzy inference rules by descent method’,1992 IEEE International Conference on Fuzzy Systems, pp. 203–210, 1992. San Diego, CA.U.S.A. |
| [16] | J. Barron, ‘Putting fuzzy logic into focus’, Byte, 111–118. Dealing with ambiguous data, desktop fuzzy-logic applications deliver precise results; Pubblicato in Italia da "Metanetwork", n.2, Inverno 1993-1994, a cura di Tommaso Tozzi e Nazario Renzoni. Trattodallarivista "Byte", Ottobre, 1993, U.S.A. doi: https://www.strano.net/wd/fm_fz/fuzzy001.htm. |
| [17] | D. I. Brubaker, ‘Fuzzy-logic basics: Intuitive rules replace complex math’, EDN, pp. 111–116, 1992. Available [Online]: https://www.pzs.dstu.dp.ua/logic/bibl/practical_approach.pdf |
| [18] | B. Kosko, ‘Neural Networks and Fuzzy Systems: A Dynamic System Approach to Machine Intelligence,’ Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A., 1992. |
| [19] | V. A. Akpan, ‘Development of new model adaptive predictive control algorithms and their implementation on real-time embedded systems’, Ph.D. Dissertation, 517 pages, 2011. Available [Online]: http://invenio.lib.auth.gr/record/127274/files/GRI-2011-7292.pdf & http://invenio.lib.auth.gr/record/127274?ln=el. |
| [20] | E. Matricciani, ‘Physical-mathematical model of the dynamics of rain attenuation based on rain rate time series and a two-layer vertical structure of precipitation’, Radio Science, Vol. 31, No. 2, pp. 281-295, 1996. doi: https://doi.org/10.1029/95RS03129. |
| [21] | ITU-R P.838-3, ‘International Telecommunication Union, Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods’, Geneva: ITU, 2003. Available [Online]: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf. |
| [22] | ITU-R P.838-3, ‘International Telecommunication Union, Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods’, Geneva: ITU, 2005. Available [Online]: https://www.itu.int/rec/R-REC-P.838/en. |
| [23] | D. Maggiori, ‘Computed transmission through rain in the 1–400 GHz frequency range for spherical and elliptical drops and any polarization’, Alta Frequenza (Italy), Vol. 50, pp. 262–273, 1981. |
| [24] | The MathWorks, Inc. (2025) MATLAB® and Simulink® 2025. Natick, MA. doi: https://doi.org.mathworks.com. |
| [25] | V. A. Akpan and G. D. Hassapis, ‘Training dynamic feedforward neural networks for online nonlinear model identification and control applications’, International Reviews of Automatic Control: Theory & Applications, Vol. 4, No. 3, pp. 335–350, 2011. |
| [26] | V. A. Akpan and G. D. Hassapis, ‘Nonlinear model identification and adaptive model predictive control using neural networks’, ISA Transactions, Vol. 5, No. 2, pp. 177–194, 2011. doi: https://doi.org/10.1016/j.isatra.2010.12.007. |
| [27] | V. A. Akpan and J. B. Agbogun, ‘A hybrid adaptive neural–fuzzy algorithms based on adaptive resonant theory with adaptive clustering algorithms for classification, prediction, tracking and adaptive control applications’, American Journal of Intelligent Systems, Vol. 12, No. 1, pp. 9–33, 2022. doi: http://article.sapub.org/10.5923.j.ajis.20221201.02.html. |
| [28] | Y. P. S. Foo and Y. Takefuji, ‘Integer linear programming neural networks for job-shop scheduling’, In Proceedings of the IEEE International Conference on Neural Networks, Vol. 2, pp. 341–348, 1988. |