[1] | J. Zhang, Y. Zheng, X. Hong, and C. Guo, "Increase in capacity of an IM/DD OFDM PON using super-Nyquist image-induced aliasing and simplified nonlinear equalization", IEEE Journal of Lightwave Technology, vol. 35, no. 19, pp. 4105-4113, Oct. 2017. |
[2] | O. A. Sab, P. Plantady, A. Calsat, S. Dubost, L. Schmalen, V. Letellier, and J. Renaudi, "25.4-Tb/s transmission over transpacific distances using truncated probabilistically shaped PDM-64QAM", IEEE Journal of Lightwave Technology, vol. 36, no. 6, pp. 1354-1361, Mar. 2018. |
[3] | A. Tanaka, S. Murakami, T. Tajima, T. J. Xia, and G. A. Wellbrock, "Terabit/s Nyquist super channels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats", IEEE Journal of Lightwave Technology, vol. 32, no. 4, pp. 776-782, Feb. 2014. |
[4] | R. Linden, N. C. Tran, E. Tangdiongga, and T. Koonen, "Optimization of flexible non-uniform multilevel PAM for maximizing the aggregated capacity in PON deployments", IEEE Journal of Lightwave Technology, vol. 36, no. 12, pp. 2328-2336, Jun. 2018. |
[5] | C. C. Wei, K. Z. Chen, L. W. Chen, C. Y. Lin, W. J. Huang, and J. Chen, "High-capacity Carrierless amplitude and phase modulation for WDM long-reach PON featuring high loss budget", IEEE Journal of Lightwave Technology, vol. 35, no. 4, pp. 1075-1082, Feb. 2017. |
[6] | B. P.S. Sahoo, C. C. Chou, C. W. Weng, and H. Y. Wei, "Enabling Millimeter-Wave 5G Networks for Massive IoT Applications", IEEE Consumer Electronics magazine, vol. 8, pp. 49-54, Jan. 2019. |
[7] | Z. Zhang, J. Dang, L. Wu, H. Wang, J. Xia, W. Lei, J. Wang, and X. You, "Optical mobile communications: principles, implementation and performance analysis", IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 471-482, Jan. 2019. |
[8] | J. Son and R. Buyya, "SDCon: integrated control platform for software-defined clouds", IEEE Transactions on Parallel and Distributed Systems, vol. 30, pp. 230-244, Jan. 2017. |
[9] | D. Soma, Y. Wakayama, S. Beppu, S. Sumita, and T. Tsuritani, "10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band", IEEE Journal of Lightwave Technology, vol. 36, no. 6, pp. 1362-1368, Mar. 2018. |
[10] | D. Soma, S. Beppu, Y. Wakayama, K. Igarashi, T. Tsuritani, I. Morita, and Masatoshi Suzuki, "257-Tbit/s weakly coupled 10-mode C + L-band WDM transmission", IEEE Journal of Lightwave Technology, vol. 36, no. 6, pp. 1375-1381, Mar. 2018. |
[11] | M. Nakao, T. Ishihara, and S. Sugiura, "Dual-mode time-domain index modulation for Nyquist-criterion and faster-than-Nyquist single-carrier transmissions", IEEE Access, vol. 5, pp. 27659 -27667, Nov. 2017. |
[12] | S. Peng, A. Liu, X. Pan, and H. Wang, "Hexagonal multicarrier faster-than Nyquist signaling", IEEE Access, vol. 5, pp. 3332- 3339, Mar. 2017. |
[13] | M. Chagnon, M. M. Osman, and D. V. Plant, "Half-terabit single-carrier direct-detect transceiver, formats, and DSP: analysis and demonstration", IEEE Journal of Lightwave Technology, vol. 36, no. 2, pp. 447-459, Jan. 2018. |
[14] | Z. Li, E. Sillekens, L. Galdino, T. Xu, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Digital linearization of direct-detection transceivers for spectrally-efficient 100 Gb/s/λ WDM metro networking", IEEE Journal of Lightwave Technology, vol. 36, no. 1, pp. 27-36, Jan. 2018. |
[15] | S. T. Le , K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. M. Engenhardt, "1.72-Tb/s virtual-carrier-assisted direct-detection transmission over 200 km", IEEE Journal of Lightwave Technology, vol. 36, no. 6, pp. 1347-1353, Mar. 2018. |
[16] | K. Zou, Y. Zhu, F. Zhang, and Z. Chen, "200Gbit/s Nyquist 16-QAM half-cycle subcarrier modulation transmission with dual-polarization direct detection", 21st OptoElectronics and Communications Conference/International Conference on Photonics in Switching (OECC/PS), pp. 3-7, Jul. 2016. |
[17] | J. Tang, J. He, D. Li, M. Chen, and L. Chen,"64/128-QAM half-cycle subcarrier modulation for short-reach optical communications ", IEEE Photonics Technology Letters, vol. 27, no. 3, pp. 284-287, Feb. 2015. |
[18] | R. Bai, Q. Wang, and Z. Wang, "Asymmetrically clipped absolute value optical OFDM for intensity-modulated direct-detection systems", IEEE Journal of Lightwave Technology, vol. 35, no. 17, pp. 3680-3691, Sep. 2017. |
[19] | M. Chen, Q. Chen, H. Zhou, Z. Zheng, J. He, and L. Chen, "Low-complexity receiver using under sampling for guard-band SSB-DDO-OFDM", IEEE Photonics Journal vol. 9, no. 4, Article no. 7203012, Aug. 2017. |
[20] | J. A. Altabas, S. Rommel, R. Puerta, D. Izquierdo, J. I. Garces, and I. T. Monroy, "Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks", IEEE Journal of Lightwave Technology, vol. 35, no. 24, pp. 5456-5463, Dec. 2017. |
[21] | N. Liu, X. Chen, C. Ju, and R. Hui, "40-Gbps vestigial sideband half-cycle Nyquist subcarrier modulation transmission experiment and its comparison with orthogonal frequency division multiplexing", Optical Engineering, vol. 53, no. 9, Article no. 096114, Sept. 2014. |
[22] | Z. Li, M. S. Erkılınc, K. S. Sillekens, L. Galdino, T. Xu, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband Nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers", IEEE Journal of Lightwave Technology, vol. 36, no. 6, pp. 1340-1346, Mar. 2018. |
[23] | Y. Zhu, K. Zou, Z. Chen, and F. Zhang,"224 Gb/s optical carrier-assisted Nyquist 16-QAMhalf-cycle single-sideband direct detection transmission over 160 km SSMF", IEEE Journal of Lightwave Technology, vol. 35, no. 9, pp.1557-1565, May 2017. |
[24] | K. Zhong, X. Hou, Y. Wang, L. Wang, J. Yuan, C. Yu, A. P. T. Lau, and C. Lu, "Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16-QAM Nyquist-SCM signal and direct detection with 25Gbps EML", Optics Express, vol. 24, no. 22, pp. 25057-25067, Oct. 2016. |
[25] | M. M. Ibrahim and R. S. Fyath, "Performance investigation of unamplified C-band Nyquist 16-QAM half-cycle transmission for short-reach optical communications", International Journal of Networks and Communications, vol. 9, no. 1, pp. 1-22, Jan. 2019. |
[26] | Z. Li, M. S. Erkılınc, K. Shi, E. Sillekens, L. Galdino, T. Xu, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Digital linearization of direct-detection transceivers for spectrally efficient 100 Gb/s/λ WDM metro networking", IEEE Journal of Lightwave Technology, vol. 36, no. 1, pp. 27-36, Jan. 2018. |
[27] | X. Ruan, K. Li, D. J. Thomson, C. Lacava, F. Meng, I. Demirtzioglou, P. Petropoulos, Y. Zhu, G. T. Reed, and F. Zhang, "Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging", Optics Express, vol. 25, no. 16, pp. 19332-19342, Aug. 2017. |
[28] | K. Zou, Y. Zhu, and F. Zhang, "800 Gb/s (8×100 Gb/s) Nyquist half-cycle single-sideband modulation direct-detection transmission over 320 km SSMF at C-band", IEEE Journal of Lightwave Technology, vol. 35, no. 10, pp. 1900-1905, May 2017. |
[29] | S. Endo, K. I. A. Sampath, and J. Maeda, "Chromatic dispersion-based modulation distortion compensation for analog radio-over-fiber: performance improvement in OFDM transmission", IEEE Journal of Lightwave Technology, vol. 36, no. 24, pp. 5963-5968, Dec. 2018. |
[30] | C. Yang, M. Luo, C. Li, W.i Li, and X. Li, "Transmission of 64-Gb/s pilot-assisted PAM-4 signal over 1440-km SSMF with phase noise mitigation", IEEE Photonics Technology, vol. 11, no. 1, Article no. 7200709, Feb. 2019. |
[31] | S. Chen, C. Xie, and J. Zhang, "Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems", IEEE Photonics Technology Letters, vol. 27, no. 1, pp. 105-108, Jun. 2015. |
[32] | J. M. Senior, "Optical fiber communications principles and practice", Prentice Hall, Financial Times, England, 2009. |
[33] | G. P. Agrawal, "Lightwave technology telecommunication systems", Wiley Intersscience, John Wiley, Sons, 111 River Street, Hoboken, NJ 07030, Canada, 2005. |
[34] | L. N. Binh, "Optical modulation advanced techniques and applications in transmission systems and networks", Taylor and Francis Group, LLC, Boca Raton, London, New York, CRC Press, 2018. |