[1] | J. Cai, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. Wang, M. Paskov, W. W. Patterson, C. R. Davidson, P. C. Corbett, G. M. Wolter, T. E. Hammon, M. A. Bolshtyansky, D. G. Foursa and A. N. Pilipetskii, “70.46 Tb/s over 7,600 km and 71.65 Tb/s over 6,970 km transmission in C+L band using coded modulation with hybrid constellation shaping and non-linearity compensation,” IEEE Journal of Lightwave Technology, vol. 36, no. 1, pp. 114-121, Jan. 2018. |
[2] | N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” IEEE Journal of Lightwave Technology, vol. 36, no. 8, pp. 1485-1491, Apr. 2018. |
[3] | K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz,” Optics Express, vol. 26, no. 13, pp. 17418- 17428, Jun. 2018. |
[4] | D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki, “10.16-Peta-B/s dense SDM/WDM transmission over 6-Mode 19-core fiber across the C+L band,” IEEE Journal of Lightwave Technology, vol. 36, no. 6, pp. 1362-1368, Mar. 2018. |
[5] | Y. Hsu, C. Y. Chuang, X. Wu, G. H. Chen, C. W. Hsu, Y. C. Chang, C. W. Chow, J. Chen, Y. C. Lai, C. H. Yeh, and H. K. Tsang, “2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal,” IEEE Photonics Technology Letters, vol. 30, no. 11, pp. 1052-1055, Jun. 2018. |
[6] | N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J. P. Elbers, J. J. V. Olmos, and I. T. Monroy, “Evaluation of real-time 8x56.25 Gb/s (400G) PAM-4 for inter-data center ap-plication over 80 km of SSMF at 1550 nm,” IEEE Journal of Lightwave Technology, vol. 35, no. 4, pp. 955-962, Feb. 2017. |
[7] | C. Prodaniuc, N. Stojanovic, F. Karinou, Z. Qiang, and R. Llorente, “Performance comparison between 4D trellis coded modulation and PAM-4 for low-cost 400 Gbps WDM optical networks,” IEEE Journal of Lightwave Technology, vol. 34, no. 22, pp. 5308-5316, Nov. 2016. |
[8] | S. Ohlendorf, S. Pachnicke, and W. Rosenkranz, “Multidimensional PAM with pseudo-gray coding for flexible data center interconnects,” IEEE Photonics Technology Letters, vol. 30, no. 12, pp. 1143-1146, Jun. 2018. |
[9] | R. Rao, T. Fukui, R. Hirai, N. Kikuchi, “400GbE using Nyquist PAM4 for 2km and 10km PMD,” Oclaro, pp. 1-11, Sept. 2014. |
[10] | G. Khanna, T. Rahman, E. D. Man, E. Riccardi, A. Pagano, A. C. Piat, S. Calabrò, B. Spinnler, D. Rafique, U. Feiste, H. D. Waardt, B. S. Krombholz, N. Hanik, T. Drenski, M. Bohn, and A. Napoli, “Single-carrier 400G 64QAM and 128QAM DWDM field trial transmission over metro legacy links,” IEEE Photonics Technology Letters, vol. 29, no. 2, pp. 189-192, Jan. 2017. |
[11] | M. M. Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “224-Gb/s 10-km transmission of PDM PAM-4 at 1.3 μm using a single intensity-modulated laser and a di-rect-detection MIMO DSP-based receiver,” IEEE Journal of Lightwave Technology, vol. 33, no. 7, pp. 1417-1424, Apr. 2015. |
[12] | H. Mardoyan, M. A. Mestre, J. M. Estar´an, F. Jorge, F. Blache, P. Angelini, A. Konczykowska, M. Riet, V. Nodji-adjim, J. Dupuy, and S. Bigo, "84-, 100-, and 107-GBd PAM-4 intensity modulation direct-detection transceiver for datacenter interconnects", IEEE Journal of Lightwave Tech-nology, vol. 35, no. 6, pp. 1253-1259, Mar. 2017. |
[13] | P. Dong, A. Maho, R. Brenot, Y. K. Chen, and A. Melikyan, “Directly reflectivity modulated laser,” IEEE Journal of Lightwave Technology, vol. 36, no. 5, pp. 1255-1261, Mar. 2018. |
[14] | E. E. Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Optics Express, vol. 25, no. 24, pp. 30336 - 30348, Nov. 2017. |
[15] | F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 gb/s/ λ data-center interconnects”, IEEE Photonics Technology Letters, vol. 27, no. 17, pp. 1872-1875, Sept. 2015. |
[16] | J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” IEEE Journal of Lightwave Technology, vol. 32, no. 16, pp. 2809-2814, Aug. 2014. |
[17] | F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Optics Express, vol. 25, no. 7, pp. 7230-7237, Apr. 2017. |
[18] | Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photonics Research, vol. 6, no. 8, pp. 776-781, Aug. 2018. |
[19] | J. P. V. Engelen, L. Shen, G. Roelkens, Y. Jiao, M. K. Smit, and J. J. G. M. V. D. Tol, “A novel broadband elec-tro-absorption modulator based on bandfilling in n-InGaAs: design and simulations,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, Article no. 3300108, Jan/Feb. 2018. |
[20] | Y. Zhu, K. Zou, Z. Chen, and F. Zhang, “224 Gb/s optical carrier-assisted Nyquist 16-QAM half-cycle single-sideband direct detection transmission over 160 km SSMF,” IEEE Journal of Lightwave Technology, vol. 35, no. 9, pp. 1557-1565, May 2017. |
[21] | Z. Li, M. S. Erkılınc, K. Shi, E. Sillekens, L. Galdino, T. Xu, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Digital linearization of direct-detection transceivers for spectrally efficient 100 Gb/s/λ WDM metro networking,” IEEE Journal of Lightwave Technology, vol. 36, no. 1, pp. 27-36, Jan. 2018. |
[22] | K. Zou, Y. Zhu, and F. Zhang, “800 Gb/s (8×100 Gb/s) Nyquist half-cycle single-sideband modulation direct-detection transmission over 320 km SSMF at C-band,” IEEE Journal of Lightwave Technology, vol. 35, no. 10, pp. 1900-1905, May 2017. |
[23] | E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. M. Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photonics Technology Letters, vol. 29, no. 3, pp. 314-317, Feb. 2017. |
[24] | M. R.T. Tan, P. Rosenberg, W. V. Sorin, B. Wang, S. Mathai, G. Panotopoulos, and G. Rankin, “Universal photonic interconnect for data centers,” IEEE Journal of Lightwave Technology, vol. 36, no. 2, pp. 175-180, Aug. 2017. |
[25] | X. Miao, M. Bi, Y. Fu, L. Li, and W. Hu, “Experimental study of NRZ, duobinary, and PAM-4 in O-band DML-based 100G-EPON,” IEEE Photonics Technology Letters, vol. 29, no. 17, pp. 1490-1493, Sept. 2017. |
[26] | H. Y. Chen, N. Kaneda, J. Lee, J. Chen, and Y. K. Chen, “Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system,” Optics Express, vol. 25, no. 6, pp. 5852- 5860, May 2017. |
[27] | X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-μm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technology Letters, vol. 29, no. 6, pp. 523-526, Mar. 2017. |
[28] | F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technology Letters, vol. 26, no. 9, pp. 941-944, May 2014. |
[29] | M. M. Osman, F. Fresi, E. Forestieri, M. Secondini, L. Potì, F. Cavaliere, S. Lessard, and D. V. Plant, “50 Gb/s short-reach interconnects with DSPfree direct-detection enabled by CAPS codes,” Optics Express, vol. 26, no. 14, pp. 17916 - 17926, Jul. 2018. |
[30] | J. Tang, J. He, D. Li, M. Chen, and L. Chen, “64/128-QAM half-cycle subcarrier modulation for short-reach optical communications,” IEEE Photonics Technology Letters, vol. 27, no. 3, pp. 284-287, Feb. 2015. |
[31] | H. Mardoyan, M. A. Mestre, R. Rios-M¨uller, A. Konczy-kowska, J. Renaudier, F. Jorge, B. Duval, J. Y. Dupuy, A. Ghazisaeidi, Ph. Jennev´e, M. Achouche, and S. Bigo, “Single carrier 168-Gb/s line-rate PAM direct detection transmission using high-speed selector power DAC for optical intercon-nects”, IEEEE Journal of Lightwave Technology, vol. 34, no. 7, pp. 1593-1598, Apr. 2016. |
[32] | N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and wiener equalizers for short-reach 100G PAM-4 applications,” IEEEE Journal of Lightwave Technology, vol. 35, no. 21, pp. 4583-4594, Nov. 2017. |
[33] | G. P. Agrawal, “Nonlinear Fiber Optics,” 5th Edition, Academic Press, New York, USA, 2013. |
[34] | G. P. Agrawal, “Lightwave technology: Telecommunication systems,” John Wiley, New York, USA, 2005. |
[35] | T. M. Bazan, “Impact of FWM on the performance of 2-D time-wavelength OCDMA systems,” IEEE Journal of Lightwave Technology, vol. 35, no. 14, pp. 2846-2852, Jul. 2017. |
[36] | C. J. McKinstrie and M. Karlsson, “Effects of polarization-mode dispersion on degenerate four-wave mixing,” IEEE Journal of Lightwave Technology, vol. 35, no. 19, pp. 4210-4218, Oct. 2017. |
[37] | J. Zyskind and A. Srivastava, “Optically amplified WDM networks,” 1st Edition, Elsevier Science, USA, 2011. |
[38] | J. X. Cai, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. Wang, M. Paskov, C. R. Davidson, W. W. Patterson, A. Turukhin, M. A. Bolshtyansky, and D. G. Foursa, “51.5 Tb/s capacity over 17,107 km in C+L bandwidth using single-mode fibers and nonlinearity compensation,” IEEE Journal of Lightwave Technology, vol. 36, no. 11, pp. 2135-2141, Jun. 2018. |
[39] | H. J. Abd, N. M. Dinl, M. H. AI-Mansoori, F. Abdullahl and H. A. Fadhie, “Mitigation of FWM crosstalk in WDM system using polarization interleaving technique,” IEEE 4th International Conference on Photonics, pp. 117-119, Dec. 2013. |
[40] | T. M. F. Alves and A. V. T. Cartaxo, “Analytical characterization of four wave mixing effect in direct-detection double-sideband OFDM optical transmission systems,” Optics Express, vol. 22, no. 7, pp. 8598-8616, Apr. 2014. |