[1] | E. Prange, “Cyclic error-correcting codes in two symbols,” AFCRC-TN-57-103, Air Force Cambridge Research Center, Cambridge, Mass. 1957. |
[2] | S. B. Wicker, Error Control Systems for Digital Communication and Storage, Englewood Cliffs, NJ: Prentice Hall, 1995. |
[3] | M. Elia, “Algebraic decoding of the (23, 12, 7) Golay codes,” IEEE Trans. Inf. Theory, vol. 33, no. 1, pp. 150–151, 1987. |
[4] | I. S. Reed, X. Yin, T. K. Truong, and J. K. Holmes, “Decoding the (24, 12, 8) Golay code,” Proc. IEE, vol. 137, no. 3, pp. 202–206, 1990. |
[5] | I. S. Reed, X. Yin, and T. K. Truong, “Algebraic decoding of the (32, 16, 8) quadratic residue code,” IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 876–880, 1990. |
[6] | I. S. Reed, T. K. Truong, X. Chen, X. Yin, “The algebraic decoding of the (41, 21, 9) Quadratic Residue code,” IEEE Trans. Inf. Theory, vol. 38, no. 3, pp. 974–986, 1992. |
[7] | R. He, I. S. Reed, T. K. Truong, and X. Chen, “Decoding the (47, 24, 11) quadratic residue code,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1181–1186, 2001. |
[8] | Y. Chang, T. K. Truong, I. S. Reed, H. Y. Cheng, and C. D. Lee, “Algebraic Decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) Quadratic Residue Codes,” IEEE Trans. on Comm., vol. 51, no. 9, pp. 1463–1473, 2003. |
[9] | T. K. Truong, Y. Chang, Y. H. Chen and C. D. Lee, “Algebraic Decoding of (103, 52, 19) and (113, 57, 15) Quadratic Residue Code,” IEEE Trans. on Comm., vol. 53, no. 5, pp. 749–754, 2005. |
[10] | Y. H. Chen, T. K. Truong, Y. Chang, C. D. Lee, and S.H. Chen, “Algebraic Decoding of Quadratic Residue Codes Using Berlekamp-Massey Algorithm,” J. Inf. Sci. Eng., vol. 23, no. 1, pp. 127–145, 2007. |
[11] | T. K Truong, P. Y. Shih, W. K. Su, C. D. Lee, and Y Chang, “Algebraic Decoding of The (89, 45, 17) Quadratic Residue Code,” IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 5005–5011, 2008. |
[12] | T. C. Lin, S. I. Chu, H. C. Chang, and H. P. Lee, "Decoding the (31, 16, 7) Quadratic Residue Code in GF(2^5)," The 4th International Conference on Computer Science and Education (ICCSE 2009), Nanning, China, 2009. |
[13] | T. C. Lin, T. K. Truong, H. P. Lee, and H. C. Chang, “Algebraic decoding of the (41, 21, 9) Quadratic Residue code,” Inf. Sci., vol. 179, no. 19, pp. 3451–3459, 2009. |
[14] | T. C. Lin、P. Y. Shih、W. K. Su、T. K. Truong, “Algebraic decoding of the (31, 16, 7) quadratic residue code by using Berlekamp-Massey algorithm,” 2010 International Conference on Communications and Mobile Computing (CMC 2010), Shenzhen, China, pp. 275–277, 2010. |
[15] | T. C. Lin, H. C. Chang, H. P. Lee, S. I. Chu, and T. K. Truong, “Decoding of the (31, 16, 7) Quadratic Residue code,” J. Chin. Inst. Eng., vol. 33, no. 4, pp. 573–580, 2010. |
[16] | H. P. Lee, H. C. Chang, and T. K. Truong, “Algebraic decoding of the (73, 37, 13) quadratic residue code,” IET Communications, vol. 6, no. 10, pp. 1326–1333, 2012. |
[17] | X. Chen, I. S. Reed, T. Helleseth, T. K. Truong, “Use of Grobner bases to decode binary cyclic codes up to the true minimum distance,” IEEE Trans. on Comm., vol. 40, no. 5, pp. 1654–1661,. 1994. |
[18] | I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI design of inverse-free Berlekamp-Massey algorithm,” IEE Proc. On Computers and Digital Techniques, vol. 138, no. 5, pp. 295–298, 1991. |
[19] | R. T. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes,” IEEE Trans. on Inf. Theory, vol. 10, no. 4, pp. 357–363, 1964. |
[20] | H. P. Lee, “A viewpoint on the decoding of the quadratic residue code of Length 89,” International Journal of Networks and Communications, vol. 2, no. 1, pp. 11–16, 2012. |