[1] | Suslick, K. S. Sonochemistry. science, 247(4949), 1439-1445 (1990). |
[2] | Kumar, B., Smita, K., Kumar, B., & Cumbal, L. Ultrasound promoted and SiO2/CCl3COOH mediated synthesis of 2-aryl-1-arylmethyl-1H-benzimidazole derivatives in aqueous media: An eco-friendly approach. Journal of Chemical Sciences, 126(6), 1831-1840 (2014). |
[3] | Kumar, B., Smita, K., Cumbal, L., & Debut, A. Ficus carica (Fig) Fruit Mediated Green Synthesis of Silver Nanoparticles and its Antioxidant Activity: a Comparison of Thermal and Ultrasonication Approach. BioNanoScience, 1-7 (2016). |
[4] | Chekroun, M., Le Marrec, L., Abraham, O., Durand, O., & Villain, G. Analysis of coherent surface wave dispersion and attenuation for non-destructive testing of concrete. Ultrasonics, 49(8), 743-751 (2009). |
[5] | Soltani, F., Goueygou, M., Lafhaj, Z., & Piwakowski, B. Relationship between ultrasonic Rayleigh wave propagation and capillary porosity in cement paste with variable water content. NDT & E International, 54, 75-83 (2013). |
[6] | Thomas. Voigt, Zhihui .Sun, Surendra. P. Shah. Comparison of ultrasonic wave reflection method and maturity method in evaluating early-age compressive strength of mortar, Cement & Concrete Composites, 28 pp 307–316 (2006). |
[7] | Soltani,F., Lafhaj, Z., Goueygou, M. Experimental determination of the relationship between porosity and surface wave parameters of fully and partially saturated cement paste. International Symposium on Non Destructive Testing in Civil Engineering, Nantes, France, 30 June -3 rd July, pp 851-856 (2009). |
[8] | L.J. Jacobs, J.O. Owino. Effect of aggregate size on attenuation of Rayleigh surface waves in cement-based materials. J. Eng. Mech. 126(11): 1124–1130 (2000). |
[9] | E.P. Papadakis. Revised grain-scattering formulas and tables. J. Acous. Soc. Am. 37(4): 703– 710 (1965). |
[10] | Saniie. J, Wang .T, Bilgutay .N. M. Analysis of homomorphic processing for ultrasonic grain characterization. IEE transaction on ultrasonics, ferroelectrics and frequency control. 34(3): 365-375 (1989). |
[11] | Aggelis .D, Polyzos .D, Philippidis.T. Wave dispersion and attenuation in fresh mortar: theoretical predictions vs. experimental results. J Mech. Phys. Solids. 53: 857–883 (2005). |
[12] | Evans. A. G, Tittmann. B. R, Ahlberg. L, Khuri-Yakub. B. T, Kino. G. S. Ultrasonic attenuation in ceramics. J. Appl. Phys. 49. 2669–2679 (1978). |
[13] | Saniie. J, Bilguty. N. M. Quantitative grain size evaluation using ultrasonic backscattered echoes. J. Acoust. Soc. Am. 80. 175– 184 (1986). |
[14] | R. Fiorito, W. Madigosky, H. Überall. Resonance theory of acoustic waves interacting with an elastic plate. J. Acoust. Soc. Am. 66, 1857 (1979). |
[15] | R. Fiorito, W. Madigosky, H. Überall. Theory of ultrasonic resonances in a viscoelastic layer. J. Acoust. Soc. Am. 77, 489 (1985). |
[16] | S. Derible, P. Rembert, J.L. Izbicki. Experimental Determination of Acoustic Resonance Width via the Argand Diagram, Acta Acustica 84 270–279 (1998). |
[17] | Hassan Bita, Ali Moudden, Bouazza Faiz, Hicham Lotfi. Non Destructive Characterization of Mortars by the Frequency Offset Method. Journal of Civil Engineering Research, Vol. 5 No. 6, pp. 136-143 (2015). |
[18] | Aggelis. D.G, Philippidis. T. P.. Ultrasonic wave dispersion and attenuation in fresh mortar. NDT&E International 37: 617–631 (2004). |
[19] | G. Ye, Experimental study and numerical simulation of the development of microstructure and permeability of cementitious materials, PhD Thesis, Delft university of technology, Delft (2003). |
[20] | Gregor. Trtnik, Matija. Gams, Recent advances of ultrasonic testing of cement based materials at early ages, Ultrasonics 54: 66–75 (2014). |
[21] | Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res; 34(2):255–65 (2004). |
[22] | M. Bouasker, P. Mounanga, P. Turcry, A. Loukili, A. Khelidj. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cement & Concrete Composites 30, pp 13–22 (2008). |
[23] | Erika Holt. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research 35 464– 472 (2005). |
[24] | Zoubeir Lafhaj, Marc Goueygou, Assia Djerbi, Mariusz Kaczmarek. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water / cement ratio and water content. Cement and Concrete Research 36 625 – 633(2006). |
[25] | M.G. Hernàndez, J.J. Anaya, L.G. Ullate, M. Cegarra, T. Sanchez. Application of a micromechanical model of three phases to estimating the porosity of mortar by ultrasound. Cement and Concrete Research 36 617–624(2006). |
[26] | S. Maalej, Z. Lafhaj, M. Bouassida. Micromechanical modelling of dry and saturated cement paste: Porosity assessment using ultrasonic waves. Mechanics Research Communications 51 8– 14(2013). |
[27] | Xudong Chen, Shengxing Wu, Jikai Zhou. Influence of porosity on compressive and tensile strength of cement mortar. Construction and Building Materials 40 869–874 (2013). |
[28] | Seok Hee Kang, Tae-Ho Ahn, Dong Joo Kim. Effect of grain size on the mechanical properties and crack formation of HPFRCC containing deformed steel fibers. Cement and Concrete Research 42 710–720(2012). |
[29] | R. Sugrañez, J.I. Álvarez, M. Cruz-Yusta, I. Mármol, J. Morales, L. Sánchez. Controlling microstructure in cement based mortars by adjusting the particle size distribution of the raw materials. Construction and Building Materials 41 139–145 (2013). |
[30] | Knut O. Kjellsen, Rachel J. Detwiler, Odd E. Gjørv. Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research. 21 179189 (1991). |