[1] | R. C. Garvie, R. H. Hannink, R. T. Pascoe, Ceramic steel? Nature, 258, 703-704, 1975. |
[2] | R. H. Hannink, P. M. Kelly, B. C. Muddle, Transformation toughening in zirconia containing ceramics, J. Am. Ceram. Soc., 83, 461-487, 2000. |
[3] | S. Tekeli, M. Erdogan, B. Aktas, Influence of α-Al2O3 addition on sintering and grain growth behavior of 8 mol% Y2O3-stabilised cubic zirconia (c-ZrO2), Ceram. Int., 30, 2203-2209, 2004. |
[4] | D. Ai, S. Kang, Synthesis of 3Y–ZrO2nano-powders via a W/O emulsion, Ceram. Int., 30, 619-623, 2004. |
[5] | S. R. Choi, N. P. Bansal, Mechanical behavior of zirconia/ alumina composites, Ceram. Int., 31, 39-46, 2005. |
[6] | Y. Zhang, J. Chen, L. Hu, W. Liu, Pressureless-sintering behavior of nanocrystalline ZrO2-Y2O3-Al2O3 system, Mater. Lett., 60, 2302-2305, 2006. |
[7] | R. C. Garvie, C. Urbani, D. R. Kennedy, J. C. McNeuer, Biocompatibility of magnesia partially stabilized zirconia (Mg-PSZ) ceramics, J. Mater. Sci., 19, 3224-3228, 1984. |
[8] | S. Ban, H. Sato, Y. Suehiro, H. Nakanishi, M. Nawa, Biaxial flexure strength and low temperature degration of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives, J. Biomed. Mater. Res. B: App. Biomat.,87B, 492-498, 2008. |
[9] | J. Chevalier, S. Deville, E. Munch, R. Jullian, F. Lair, Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis, Biomater.,25, 5539-5545, 2004. |
[10] | J. Chevalier, L. Gremillard, A. V. Virkar, D. R. Clarke, The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc.,92, 1901-1920, 2009. |
[11] | J. K. M. F. Daguano, C. Santos, R. C. Souza, R. M. Balestra, K. Strecker, C. N. Elias, Properties of ZrO2-Al2O3 composite as a function of isothermal holding time, Int. J. Refact. Met. Hard Mater.,25, 374-379, 2007. |
[12] | I. Denry, J. R. Kelly, State of art of zirconia for dental applications, Dent. Mater., 24, 299-307, 2008. |
[13] | T. K. Gupta, F. F. Lange, J. H. Bechtold, Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase, J. Mater. Sci.,13, 1464-1470, 1978. |
[14] | J. LLorca, J. Y. Pastor, P. Poza, J. I. Pena, I. Francisco, A. Larrea, V. M. Orera, Influence of the Y2O3 content and temperature on the mechanical properties of melt-grown Al2O3-ZrO2 eutectics, J. Am. Ceram. Soc., 87, 633-639, 2004. |
[15] | S. C. Farmer, A. Sayir, Tensile strength and microstructure of Al2O3-ZrO2 hypo-eutectics fibers, Eng. Fract. Mech., 69, 1015-1024, 2002. |
[16] | B. I. Ardlin, Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of low temperature aging on flexural strength and surface structure, Dent. Mater.,18, 590-595, 2002. |
[17] | M. C. Correa de Sá e Benevides de Moraes, E. C. Nelson, F. J. Duailibi, L. Gulmaraes de Oliveira, Mechanical properties of alumina-zirconia composites for ceramic abutments, Mater.Res.,7, 643-649, 2004. |
[18] | A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, M. H. Bocanegra-Bernal, On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content, Int. J. Refract. Met. Hard Mater., 27, 962-970, 2009. |
[19] | J. Schneider, S. Begand, R. Kriegel, C. Kaps, W. Glien, T. Oberbach, Low-temperature aging behavior of alumina-toughened zirconia, J. Am. Ceram. Soc., 91, 3613-3618, 2008. |
[20] | M. Guazzato, M. Albakry, S. Ringer, M. V. Swain, Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics, Dent. Mater., 20, 441-448, 2004. |
[21] | M. Guazzato, M. Albakry, S. Ringer, M. V. Swain, Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics, Dent. Mater.,20, 449-456, 2004. |
[22] | K. Matsui, H. Yoshida, Y. Ikuhara, Isothermal sintering effects on phase separation and grain growth in yttria-stabilized tetragonal zirconia polycrystal, J. Am. Ceram. Soc., 92, 467-475, 2009. |
[23] | B. L. Karihaloo, Contributions of t-m phase transformation to the toughening of ZTA, J. Am. Ceram. Soc., 74, 1703-1706, 1991. |
[24] | A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomater.,23, 937–945, 2002. |
[25] | G. Gregori, W. Burger, V. Sergo, Piezo-spectroscopic analysis of the residual stress in zirconia-toughened alumina ceramics: the influence of the tetragonal-to-monoclinic transformation, Mater. Sci. Eng. A, 271, 401–406, 1999. |
[26] | H. Toraya, M. Yoshimura, S. Somiya, . Quantitative analysis of monoclinic stabilized cubic ZrO2 systems by X-ray diffraction, J. Am. Ceram. Soc., 67, 183-184, 1984. |
[27] | M. Kagawa, M. Kikuchi, Y. Syono, T. Nagae, Stability of ultrafine tetragonal ZrO2coprecipitated with Al2O3 by the spray-ICP technique, J. Am. Ceram. Soc., 66, 751-754, 1983. |
[28] | S. Li, H. Izui, M. Okano, W. Zhang, T. Watanabe, Microstructure and mechanical properties of ZrO2 (Y2O3)–Al2O3 nanocomposites prepared by spark plasma sintering, Particuology, 10, 345–351, 2012. |
[29] | S. Tekeli, Fracture toughness (KIC), hardness, sintering and grain growth behavior of 8YSCZ/Al2O3 composites produced by colloidal processing, J. Alloys. Compd., 391, 217–224, 2005. |
[30] | L. -F. He, Y. -W Bao, Y. -C Zhou, Zirconium Aluminum Carbides: New Precursors for Synthesizing ZrO2-Al2O3 Composites, J. Am. Ceram. Soc., 92, 2751-2758, 2009. |
[31] | S. W. Kim, K. A. R. Khalil, High-frequency induction heat sintering of mechanically alloyed alumina-Yttria stabilized zirconia nano-bioceramics, J. Am. Ceram. Soc., 89, 1280-1285, 2006. |
[32] | D. Y. Chen, E. H. Jordan, M. Gell, X. Q. Ma, Dense alumina-zirconia coating using the solution precursor plasma spray process, J. Am. Ceram. Soc., 91, 359-365, 2008. |
[33] | Y. Ye, J. Li, H. Zhou, J. Chen, Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics, Ceram. Int., 34, 1797-1803, 2008. |