[1] | Sukla, A. Practical Fracture Mechanics in Design. 2nd Edition. New York: Marcel Dekker (2005). |
[2] | Fan, S.C., Liu, X., Lee, C.K. Enriched partition-of-unity finite element method for stress intensity factors at crack tips. Comp. & Struct. 82, 445-461(2004). |
[3] | Gürses, E., Miehe, C. A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comp. Meth. Appl. Mech. Eng., 198, 1413–1428(2009). |
[4] | Wen, P.H., Aliabadi, M.H. A variational approach for evaluation of stress intensity factors using the element free Galerkin method. Int. J. of Sol. & Stru., 8, 1171–1179(2011). |
[5] | Xie, Y.J., Lee, K.Y., Hu, X.Z., Cai, Y.M. Applications of conservation integral to indentation with a rigid punch. Eng. Fract. Mech. 76, 949–957(2009). |
[6] | Abdelaziz ,Y., Benkheira, S., Rikioui, T., Mekkaoui, A. A double degenerated finite element for modeling the crack tip singularity, App. Math. Modl., 34, 4031–4039(2010). |
[7] | Fortino, S., Bilotta, A. Evaluation of the amount of crack growth in 2D LEFM problem. Eng. Fract. Mech. 71, 1403–19(2004). |
[8] | Stanislav, S., Zdenek, K. Two parameter fracture mechanics: Fatigue crack behavior under mixed mode conditions. Eng. Fract. Mech. 75, 857(2008). |
[9] | Colombo, D., Giglio, M. A methodology for automatic crack propagation modelling in planar and shell FE models. Eng. Fract. Mech. 73, 490-504(2006). |
[10] | Freese, C.E., Tracey, D.M. The natural triangle versus collapsed quadrilateral for elastic crack analysis. Int. J. of Fract. 12, 767-770 (1976). |
[11] | Barsoum, R. S. On the use of isoparametric finite elements in linear fracture mechanics. Int. J. for Num. Meth. in Eng., 10, 25-37(1976). |
[12] | Xie, M., Gerstle, W.H., Rahulkumar, P. Energy-based automatic mixed-mode crack-propagation modeling. J. of Eng. Mech. ASCE. 121, 914–923(1995). |
[13] | T Bittencourt, N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L. Quasi-automatic simulationof crack propagation for 2D LEFM problems, Eng. Fract. Mech., 55, 321–334(1996). |
[14] | Chiou, Y.J., Lee, Y.M., Jowtsay, R. Mixed mode fracture propagation by manifold method. Int. J. of Fract. 114, 327–347(2002). |
[15] | Guan, Z.Q., Song, C., Gu, Y.X. Recent advances of research on finite element mesh generation methods. J. of Comp. Aided Design and Comp. Graph. 15 (1), 1–14(2003). |
[16] | Zienkiewicz, O., Taylor, R., Zhu, J. The finite element method: its basis and fundamenta. 2005. |
[17] | Ariffin, A.K. : PhD Thesis, University of Wales Swansea. 1995. |
[18] | Phongthanapanich, S., Dechaumphai, P. Adaptive Delaunay triangulation with object oriented programming for crack propagation analysis. Fin. Elem. Anal. Des. 40, 1753–1771(2004). |
[19] | Araújo, T., Bittencourt, T., Roehl, D., Martha, L. Numerical estimation of fracture parameters in elastic and elastic-plastic analysis, European Congress on Computational Methods in Applied Sciences and Engineering, 11-14 September. Barcelona (2000). |
[20] | Anlas, G., Santare, M., Lambros, J. Numerical calculation of stress intensity factors in functionally graded materials. Int. J. of Fract. 104, 131–143(2000). |
[21] | Guinea, G.V., Planan, J., Elices, M. KI evaluation by the displacement extrapolation technique. Eng. Fract. Mech. 66, 243-255(2000). |
[22] | Fett, T., Gerteisen, G., Hahnenberger, S., Martin, G., Munz, D. Fracture tests for ceramics under mode-I, mode-II and mixed-mode loading. J. of the Eur.Cer. Soc., 5(4), 307-312(1995) |