International Journal of Materials Engineering
2012; 2(4): 50-56
doi: 10.5923/j.ijme.20120204.04
Antônio Jorge Parga Silva 1, Francisco Antonio Rocco Lahr 2, André Luis Christoforo 3, Túlio Hallak Panzera 3
1Department of Civil Construction, Federal Center of Technological Education of Maranhão, São Luis, 65030-000, Brazil
2Department of Structural Engineering, University of São Paulo (EESC/USP), São Carlos, 13566-590, Brazil
3Department of Mechanical Engineering, Federal University of São João del-Rei (UFSJ), São João del-Rei, 36307-352, Brazil
Correspondence to: André Luis Christoforo , Department of Mechanical Engineering, Federal University of São João del-Rei (UFSJ), São João del-Rei, 36307-352, Brazil.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The composites of natural fibers are products known in several parts of the world, however their utilization is relatively restrict due to the lack of information concerning their properties and structures. Lignocellulosic fibers present high length/thickness relation, which contributes to the biodegradation and continuity of the ecological cycle. Such fibers present low density and enable a lower cost in composites manufacture, playing an important role in the definition of their physical and mechanical properties. The cane bagasse is a residue derived from sugar cane, a commercially important product in Brazil, with a high concentration of fibers, high content of lignin, which is a factor of environmental impact, with future perspectives of use. The present paper aims to evaluate the density of cane bagasse as composites of long particles and their internal adhesion, as well as to verify their temperature until decomposition and suggest their possible future utilization. The requisites of this product in terms of limit values for the properties of OSB are defined by EN-300/2002 standard.
Keywords: Composites, OSB, Sugar Cane Bagasse
![]() | Figure 1. Directed layers, long particles and OSB panels in the market. Source:[1] |
![]() | Figure 2. NETZSCH Equipment, model STA 409 Cell-Thermogravimetric analysis |
![]() | Figure 3. Material treated in water and sun dried for preliminary drying |
![]() | Figure 4. Bagasse after being dried in heater, test equipment, solid percentage and slicing of sugar cane bagasse |
![]() | Figure 5. Large particle orienter developed in LaMEM-SET and layers of oriented particles of cane bagasse |
![]() | Figure 6. Long particles in Marconi MA-98/50 hydraulic press and definitive panel |
![]() | (1) |
![]() | (2) |
![]() | (3) |
![]() | (4) |
![]() | (5) |
![]() | (6) |
![]() | Figure 7. Thermogravimetric decomposition curve of the sugar cane bagasse |
|
|
|
|
|
[1] | A. J. P. Silva. “Aplicação de partículas longas e orientadas de bagaço de cana-de-açúcar na produção de painel particulado similar ao OSB”. Tese (Doutorado). Escola de Engenharia de São Carlos da Universidade de São Paulo, 2006. |
[2] | D. Zhow. “A estudy of oriented structural board made from hybrid poplar. Phisical and mechanical properties of OSB”. Holz Als Roh Und Werkstoff, Berlin, v. 48, n. 7-8, p. 293-296, 1990. |
[3] | S. Suzuki, K. Takeda. “Production and properties of Japanese oriented strand board I: effect of strand length and orientation on strength properties of sugi oriented strand board”. Japan Wood Science, Tokyo, v. 46, p. 289-295. 2000. |
[4] | W. Thomas. “Poisson’s ratios of an oriented strand board”. Wood Sci Technol, 37, pp. 259–268, 2003. |
[5] | T. Nishimura, M. P. Ansell, N. Ando. “The relationship between the arrangement of wood strands at the surface of OSB and the modulus of rupture determined by image analysis”. Wood Sci Technol, 35 (6), pp. 555–562, 2003. |
[6] | G. Painter, H. Budman, M. Pritzker. “Prediction of oriented strand board properties from mat formation and compression operating conditions”. Part 2: MOE prediction and process optimization. Wood Sci Technol, 40 (4), pp. 291–307, 2006. |
[7] | V. Yadama, M. P. Wolcott, L. V. Wolcott. “Elastic properties of wood-strand composites with undulating strands”. Compos Part A: Appl Sci Manuf, 37 (3), pp. 385–392, 2006. |
[8] | M. Rebollar, R. Perez, R. Vidal. “Comparison between oriented strand boards and other wood-based panels for the manufacture of furniture”. Mater Des, 28 (3), pp. 882–888, 2008. |
[9] | J. M. H. Jesus. “Estudo do adesivo poliuretano à base de mamona em madeira laminada colada(MLC)”. São Carlos, 2000, 106p. Tese de Doutorado – Ecla de Engenhria de São Carlos, Universidade de São Paulo. |
[10] | L. C. R. Araújo. “Caracterização química e mecânica de poliuretanas elastoméricas baseadas em materiais oleoquímicos”. São Carlos, 1992. Dissertação de Mestrado – Instituto de Física e Química de São Carlos. Universidade de São Paulo. |
[11] | S. Claro Neto. “Caracterizações físico-químicas de um poliuretano derivado de óleo de mamona utilizado para implantes ósseos”. São Carlos, 1997. 127p Tese de Doutorado – Instituto de Química de São Carlos, Universidade de São Paulo. |
[12] | M. A. E. Santana, D. E. Teixeira. “Uso do bagaço de cana-de-açúcar na confecção de chapas de aglomerados”. In: Congresso Florestal Brasileiro, 7; Congresso Florestal Pan-americano, 1. Curitiba, 1993. Anais. São Paulo: SBS/SBEF, p. 667-672, 1993. |
[13] | G. Han, Q. Wu. “Comparative properties of sugarcane rind and wood strands for structural composite manufacturing”. Forest Products Journal 54(12): p. 283-288, December/2004. |
[14] | M. C. Mesa Valenciano. “Incorporação de resíduos agroindustriais e seus efeitos sobre as características físico-mecânicas de tijolos de solo melhorado com cimento”. Dissertação (Mestrado) – Faculdade de Engenharia Agrícola, Universidade de Campinas, Campinas, 1999. |
[15] | J. F. M. Hernández, B. Middendorf, M. Gehrke, H. Budelmann. “Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction”. Cement and Concrete Research, v. 28, n. 11, p. 1525-1536, 1998. |
[16] | L. K. Aggarwal. “Bagasse-reinforced cement composites”. Cement and Concrete Composites, v. 17, n. 2, p. 107-112, 1995. |
[17] | C. R. Sarmiento, W. J. Freire. “Argamassa de cimento e areia combinada com fibras de bagaço de cana-de-açúcar”. Engenharia Agrícola, v. 17, n. 2, p. 1-8, 1997. |
[18] | C. Y. Kawabata. “Aproveitamento de cinzas da queima de resíduos agroindustriais na produção de compósitos fibrosos e concreto leve para a construção rural”. Tese (Doutorado) – Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo, Pirassununga, 2008. |
[19] | European Committee For Standardization. European Standard - EN 300. Aglomerado de partículas de madeira longas e orientadas (OSB) – Definições, classificação e especificações. Portugal, 2002. |