[1] | G. R. Rout and S. Sahoo, “ROLE OF IRON IN PLANT GROWTH AND METABOLISM,” Rev. Agric. Sci., vol. 3, no. 0, pp. 1–24, 2015, doi: 10.7831/ras.3.1. |
[2] | M. A. Bhat et al., “Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants,” Curr. Issues Mol. Biol., vol. 46, no. 6, pp. 5194–5222, May 2024, doi: 10.3390/cimb46060312. |
[3] | K. N. Shoudho, T. H. Khan, U. R. Ara, M. R. Khan, Z. B. Z. Shawon, and M. E. Hoque, “Biochar in global carbon cycle: Towards sustainable development goals,” Curr. Res. Green Sustain. Chem., vol. 8, p. 100409, 2024, doi: 10.1016/j.crgsc.2024.100409. |
[4] | S.-F. Tang et al., “Adsorption Characteristics and Mechanisms of Fe-Mn Oxide Modified Biochar for Pb (II) in Wastewater,” Int. J. Environ. Res. Public. Health, vol. 19, no. 14, p. 8420, Jul. 2022, doi: 10.3390/ijerph19148420. |
[5] | Y. Chen et al., “Iron-modified biochar derived from sugarcane bagasse for adequate removal of aqueous imidacloprid: sorption mechanism study,” Environ. Sci. Pollut. Res., vol. 30, no. 2, pp. 4754–4768, Jan. 2023, doi: 10.1007/s11356-022-22357-6. |
[6] | N. Sornhiran et al., “Aluminum- and iron-engineered biochar from sugarcane filter cake as phosphorus adsorbents and fertilizers,” Science Asia, vol. 47, no. 2, p. 220, 2021, doi: 10.2306/scienceasia1513-1874.2021.032. |
[7] | J. Qian, X. Zhou, Q. Cai, J. Zhao, and X. Huang, “The Study of Optimal Adsorption Conditions of Phosphate on Fe-Modified Biochar by Response Surface Methodology,” Molecules, vol. 28, no. 5, p. 2323, Mar. 2023, doi: 10.3390/molecules28052323. |
[8] | X.-F. Tan et al., “Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups,” Chin. Chem. Lett., vol. 32, no. 10, pp. 2939–2946, Oct. 2021, doi: 10.1016/j.cclet.2021.04.059. |
[9] | A. J. Hussain, D. K. A. Al-Taey, and H. J. Kadhum, “Biochar Application Increases the Amount of Nitrogen, Phosphorus and Potassium in the Soil: a Review,” IOP Conf. Ser. Earth Environ. Sci., vol. 1213, no. 1, p. 012023, Jul. 2023, doi: 10.1088/1755-1315/1213/1/012023. |
[10] | H. M. Alkharabsheh et al., “Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review,” Agronomy, vol. 11, no. 5, p. 993, May 2021, doi: 10.3390/agronomy11050993. |
[11] | T. Wu et al., “Mechanistic insight into interactions between tetracycline and two iron oxide minerals with different crystal structures,” Chem. Eng. J., vol. 366, pp. 577–586, Jun. 2019, doi: 10.1016/j.cej.2019.02.128. |
[12] | A. U. Rajapaksha et al., “Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification,” Chemosphere, vol. 148, pp. 276–291, Apr. 2016, doi: 10.1016/j.chemosphere.2016.01.043. |
[13] | J. M. G. Costa, J. L. G. Corrêa, B. E. Fonseca, F. M. Borém, and S. V. Borges, “Drying and Isotherms of Sugar Cane Bagasse,” Rev. Eng. Na Agric. - REVENG, vol. 23, no. 2, pp. 128–142, Apr. 2015, doi: 10.13083/1414-3984/reveng. V23n2p128-142. |
[14] | Y. Huang et al., “Biochar-based molybdenum slow-release fertilizer enhances nitrogen assimilation in Chinese flowering cabbage (Brassica parachinensis),” Chemosphere, vol. 303, p. 134663, Sep. 2022, doi: 10.1016/j.chemosphere.2022.134663. |
[15] | D. Bonvin, J. A. M. Bastiaansen, M. Stuber, H. Hofmann, and M. Mionić Ebersold, “Chelating agents as coating molecules for iron oxide nanoparticles,” RSC Adv., vol. 7, no. 88, pp. 55598–55609, 2017, doi: 10.1039/C7RA08217G. |
[16] | E. Marguí, I. Queralt, and E. De Almeida, “X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends,” Chemosphere, vol. 303, p. 135006, Sep. 2022, doi: 10.1016/j.chemosphere.2022.135006. |
[17] | Z. Tan, S. Yuan, M. Hong, L. Zhang, and Q. Huang, “Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd,” J. Hazard. Mater., vol. 384, p. 121370, Feb. 2020, doi: 10.1016/j.jhazmat.2019.121370. |
[18] | S. Mahawong et al., “Single-Step Upcycling of Sugarcane Bagasse and Iron Scrap into Magnetic Carbon for High-Performance Adsorbents,” Molecules, vol. 30, no. 9, p. 2040, May 2025, doi: 10.3390/molecules30092040. |
[19] | X. Liu et al., “A Valuable Biochar from Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions,” Sci. Rep., vol. 7, no. 1, p. 10033, Aug. 2017, doi: 10.1038/s41598-017-09446-0. |
[20] | A. Fakhar et al., “Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance,” Biochar, vol. 7, no. 1, p. 8, Jan. 2025, doi: 10.1007/s42773-024-00397-0. |
[21] | O. M. A. Almawgood, S. A. E. Tohamy, E. H. Ismail, and F. A. Samhan, “Sugarcane Bagasse Biochar with Nanomagnetite: A novel Composite Heavy Metals Pollutants Removal,” Egypt J Chem, no. 3, 2021. |
[22] | Y. Wang et al., “Simultaneous Immobilization of Soil Cd (II) and As (V) by Fe-Modified Biochar,” Int. J. Environ. Res. Public. Health, vol. 17, no. 3, p. 827, Jan. 2020, doi: 10.3390/ijerph17030827. |
[23] | P. Praipipat, P. Ngamsurach, and A. Sanghuayprai, “Modification of sugarcane bagasse with iron(III) oxide-hydroxide to improve its adsorption property for removing lead(II) ions,” Sci. Rep., vol. 13, no. 1, p. 1467, Jan. 2023, doi: 10.1038/s41598-023-28654-5. |
[24] | N.-T. Nguyen, A.-B. Lin, C.-T. Chang, and G.-B. Hong, “Bimetallic Zinc-Iron-Modified Sugarcane Bagasse Biochar for Simultaneous Adsorption of Arsenic and Oxytetracycline from Wastewater,” Molecules, vol. 30, no. 3, p. 572, Jan. 2025, doi: 10.3390/molecules30030572. |
[25] | A. Hafeez, T. Pan, J. Tian, and K. Cai, “Modified Biochars and Their Effects on Soil Quality: A Review,” Environments, vol. 9, no. 5, p. 60, May 2022, doi: 10.3390/environments9050060. |
[26] | Y. Qiu, X. Xu, Z. Xu, J. Liang, Y. Yu, and X. Cao, “Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties,” Chem. Eng. J., vol. 389, p. 124471, Jun. 2020, doi: 10.1016/j.cej.2020.124471. |