[1] | Gentzen, M., Doronkin, D.E., Sheppard, T.L., Grunwaldt, J.D., Sauer, J. and Behrens, S., 2018. An intermetallic Pd2Ga nanoparticle catalyst for the single-step conversion of CO-rich synthesis gas to dimethyl ether. Applied Catalysis A: General, 562, pp.206-214. |
[2] | Арутюнов, В.С., 2008. Мировая газохимия сегодня (Итоги 8-го Международного симпозиума по конверсии природного газа-NGCSVIII). Катализ в промышленности, (1), pp.51-58. |
[3] | Simonetti, D.A., Carr, R.T. and Iglesia, E., 2012. Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C1 species. Journal of catalysis, 285(1), pp.19-30. |
[4] | Matieva, Z.M., Kurumov, S.A., Snatenkova, Y.M., Kolesnichenko, N.V., Bondarenko, G.N. and Khadzhiev, S.N., 2019. Conversion of Dimethyl Ether to a Mixture of Liquid Hydrocarbons with Increased Triptane Content. Russian Journal of Applied Chemistry, 92, pp.235-243. |
[5] | Ahn, J.H., Temel, B. and Iglesia, E., 2009. Selective homologation routes to 2, 2, 3-trimethylbutane on solid acids. Angewandte Chemie International Edition, 48(21), pp.3814-3816. |
[6] | Simonetti, D.A., Ahn, J.H. and Iglesia, E., 2011. Mechanistic details of acid-catalyzed reactions and their role in the selective synthesis of triptans and isobutane from dimethyl ether. Journal of Catalysis, 277(2), pp.173-195. |
[7] | Otalvaro, N.D., Kaiser, M., Delgado, K.H., Wild, S., Sauer, J. and Freund, H., 2020. Optimization of the direct synthesis of dimethyl ether from CO 2 rich synthesis gas: closing the loop between experimental investigations and model-based reactor design. Reaction Chemistry & Engineering, 5(5), pp.949-960. |
[8] | Khadzhiev, S.N., Kolesnichenko, N.V., Markova, N.A., Bukina, Z.M., Ionin, D.A. and Kulumbegov, R.V., 2012. RU Patent No. 2442650. |
[9] | Bukina Z.M., Grafova G.M., Ionin D.A., Kolesnichenko N.V., Lin G.I., Markova N.A., Khadzhiev S.N. Patent PF No. 2442767. 2012. |
[10] | Patent RF No. 2616981. 2017. |
[11] | Stiefel, M., Ahmad, R., Arnold, U. and Döring, M., 2011. Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas: Influence of dehydration catalysts and operating conditions. Fuel Processing Technology, 92(8), pp.1466-1474. |
[12] | Lee, K.Y., Lee, S.W. and Ihm, S.K., 2014. Acid strength control in MFI zeolite for the methanol-to-hydrocarbons (MTH) reaction. Industrial & Engineering Chemistry Research, 53(24), pp.10072-10079. |
[13] | Ratamanalaya, P., Limtrakul, S., Vatanatham, T. and Ramachandran, P.A., 2011. Kinetics Study of Direct Dimethyl Ether Synthesis. In TIChE International Conference. Hatyai. |
[14] | Song, J.W., Lam, S.M., Fan, X., Cao, W.J., Wang, S.Y., Tian, H., Chua, G.H., Zhang, C., Meng, F.P., Xu, Z. and Fu, J.L., 2020. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell metabolism, 32(2), pp.188-202. |
[15] | Bjørgen, M., Joensen, F., Holm, M.S., Olsbye, U., Lillerud, K.P. and Svelle, S., 2008. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A: General, 345(1), pp.43-50. |
[16] | Rac, V., Rakić, V., Miladinović, Z., Stošić, D. and Auroux, A., 2013. Influence of the desilication process on the acidity of HZSM-5 zeolite. Thermochimica Acta, 567, pp.73-78. |
[17] | Van Der Bij, H.E., Aramburo, L.R., Arstad, B., Dynes, J.J., Wang, J. and Weckhuysen, B.M., 2014. Phosphatation of Zeolite H-ZSM-5: A Combined Microscopy and Spectroscopy Study. ChemPhysChem, 15(2), pp.283-292. |
[18] | Rahmani, F., Haghighi, M. and Estifaee, P., 2014. Synthesis and characterization of Pt/Al2O3–CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: Conventional vs. plasma–ultrasound hybrid synthesis methods. Microporous and Mesoporous Materials, 185, pp.213-223. |
[19] | Zaidi, H.A. and Pant, K.K., 2014. An oxalic-acid-treated ZnO/CuO/HZSM-5 catalyst with high resistance to coke formation for the conversion of methanol to hydrocarbons. International Journal of Green Energy, 11(4), pp.376-388. |
[20] | Ibodullayevich, F.N., Yunusovna, B.S. and Anvarovna, X.D., 2020. Physico-chemical and texture characteristics of Zn-Zr/VKTS catalyst. Journal of Critical Reviews, 7(7), pp.917-920. |
[21] | Mamadoliev, I.I., Khalikov, K.M. and Fayzullaev, N.I., 2020. Synthesis of high silicon of zeolites and their sorption properties. International Journal of Control and Automation, 13(2), pp.703-709. |
[22] | Mamadoliev, I.I. and Fayzullaev, N.I., 2020. Optimization of the activation conditions of high silicon zeolite. International Journal of Advanced Science and Technology, 29(3), pp.6807-6813. |
[23] | Temirov, F.N., Khamroyev, J.K., Fayzullayev, N.I., Haydarov, G.S. and Jalilov, M.K., 2021, September. Hydrothermal synthesis of zeolite HSZ-30 based on kaolin. In IOP Conference Series: Earth and Environmental Science (Vol. 839, No. 4, p. 042099). IOP Publishing. |
[24] | Park, H.W., Ha, J.K. and Lee, E.S., 2014. Kinetic mechanism of dimethyl ether production process using syngas from integrated gasification combined cycle power plant. Korean Journal of Chemical Engineering, 31, pp.2130-2135. |
[25] | Buronov, F. and Fayzullayev, N., 2022, June. Synthesis and application of high silicon zeolites from natural sources. In AIP Conference Proceedings (Vol. 2432, No. 1, p. 050004). AIP Publishing LLC. |
[26] | Tursunova, N.S. and Fayzullaev, N.I., 2020. Kinetics of the reaction of oxidative dimerization of methane. International Journal of Control and Automation, 13(2), pp.440-446. |
[27] | Fajzullaev, N.I. and Fajzullaev, O.O., 2004. Kinetic regularities in the reaction of the oxidizing condensation of methane on applied oxide catalysts. Khimicheskaya Promyshlennost, 4, pp.204-207. |
[28] | Muradov, K.M. and Fajzullaev, N.I., 2003. Technology for producing ethylene using the reaction of the oxidizing condensation of methane. Khimicheskaya Promyshlennost, 6, pp.3-7. |
[29] | Sarimsakova, N.S., Atamirzayeva, S.T., Fayzullaev, N.I., Musulmonov, N.X. and Ibodullayeva, M.N., 2020. Kinetics and mechanism of reaction for producing ethyl acetate from acetic acid. International Journal of Control and Automation, 13(2), pp.373-382. |
[30] | Omanov, B.S., Fayzullaev, N.I., Musulmonov, N.K., Xatamova, M.S. and Asrorov, D.A., 2020. Optimization of vinyl acetate synthesis process. International Journal of Control and Automation, 13(1), pp.231-238. |
[31] | Omanov, B.S., Fayzullaev, N.I. and Xatamova, M.S., 2020. Vinyl acetate production technology. International Journal of Advanced Science and Technology, 29(3), pp.4923-4930. |
[32] | Fayzullayev, N.I., Umirzakov, R.R. and Pardaeva, S.B., 2005. Study of acetylating reaction of acetylene by gas chromatographic method. In ACS National Meeting Book of Abstracts (pp. PETR-66). |
[33] | Fajzullaev, N.I. and Muradov, K.M., 2004. Investigation of reaction of catalytic vapor-phase synthesis of vinyl acetate on applied catalyst. Khimicheskaya Promyshlennost, 3, pp.136-139. |
[34] | Fayzullayev, N.I. and Umirzakov, R.R., 2005. To obtain acetone by spontaneous hydration of acetylene. In ACS National Meeting Book of Abstracts (pp. PETR-71). |
[35] | Fayzullaev, N.I., Yusupov, D. and Shirinov, K., 2002. Sh.,... Keremetskaya, LV, Umirzakov, RR Catalytic vapor-phase hydration of acetylene and its derivatives. Khimicheskaya Promyshlennost, 7, pp.34-37. |
[36] | Fayzullaev, N.I., 2004. Kinetics and mechanism of reaction of catalytic hydrochlorination of acetylene. Khimicheskaya Promyshlennost, 1, pp.49-52. |
[37] | Aslanov, S.C., Buxorov, A.Q. and Fayzullayev, N.I., 2021. Catalytic synthesis of C $ _2 $-C $ _4 $-alkenes from dimethyl ether. arXiv preprint arXiv:2104.03173. |
[38] | Bukhorov, A.Q., Aslanov, S.C. and Fayzullaev, N.I., 2022, June. Conversion of dimethyl ether to lower olefines. In AIP Conference Proceedings (Vol. 2432, No. 1, p. 050011). AIP Publishing LLC. |
[39] | Bukhorov, A.Q., Aslanov, S.C. and Fayzullaev, N.I., 2022, June. Kinetic laws of dimethyl ether synthesis in synthesis gas. In AIP Conference Proceedings (Vol. 2432, No. 1, p. 050012). AIP Publishing LLC. |
[40] | Khadzhiev, S.N., Kolesnichenko, N.V., Khivrich, E.N. and Batova, T.I., 2019. Catalysts for Dimethyl Ether Conversion to Lower Olefins: Effect of Acidity, Postsynthesis Treatment, and Steam and Methanol Content in Feedstock. Petroleum Chemistry, 59, pp.427-437. |
[41] | Musulmonov, N.X. and Fayzullaev, N.I., 2022, June. Textural characteristics of zinc acetate catalyst. In AIP Conference Proceedings (Vol. 2432, No. 1, p. 050015). AIP Publishing LLC. |