[1] | Ananpattarachai J., Kajitvichyanukul P., Seraphin S., Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants, Journal of Hazardous Materials, 2009; 168, 253–261. |
[2] | Fujishima A., Hashimoto K., Watanabe T., TiO2 Photocatalysis: Fundamentals and Applications, BKC Inc., Tokyo, 1999. |
[3] | Zhang Y., Chen Y., Westerhoff P., Crittenden J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Research, 2009; 43, 4249–4257. |
[4] | Ganesh I., Gupta A.K., Kumar P.P., Chandra Sekhar P.S., Radha K., Padmanabham G., Sundararajan G., Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications, Materials Chemistry and Physics, 2012; 135, 220–234. |
[5] | Wang H-W., Lin H-C., Kuo C-H., Cheng Y-L., Yeh Y-C., The CMS experiment at the CERN LHC, Journal of Physics and Chemistry of Solids, 2008; 69, 633–636. |
[6] | Lai Y., Chen Y., Zhuang H., Lin C., The ATLAS Experiment at the CERN Large Hadron Collider, Materials Letters, 2008; 62, 3688–3690. |
[7] | Amin S.A., Pazouk M., Hosseinnia A., Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli, Powder Technology, 2009; 196, 241-245. |
[8] | Li X.S., Fryxell G.E., Wang C., Engelhard M.H., The synthesis of Ag-doped mesoporous TiO2, Microporous and Mesoporous Materials, 2008; 111, 639–642. |
[9] | Wua Q-H., Fortunellib A., Granozzi G., Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals, International Reviews in Physical Chemistry, 2009; 28, 517–576. |
[10] | Aysin B., Ozturk A., Park J., Silver-loaded TiO2 powders prepared through mechanical ball milling, Ceramics International, 2013; 39, 7119–7126. |
[11] | Shi-Jie S., Li-Ping Y., Xiao-Min L., Xiao-Ling W., Hui Y., Xiao-Dong S., Preparation and characterization of TiO2 doped and MgO stabilized Na-Al2O3 electrolyte via a citrate sol–gel method, Journal of Alloys and Compounds, 2013; 563, 176–179. |
[12] | Sriwong C., Wongnawa S., Patarapaiboolchai O., Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability, Catalysis Communications, 2012; 24(3) 464–472. |
[13] | Žunič V., Vukomanović M., Škapin S.D., Suvorov D., Kovač J., Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach, Ultrasonics Sonochemistry (Article in press), DOI: 10.1016/j.ultsonch.2013.05.018. |
[14] | MacÉ T., Vaslin-Reimann S., Ausset P., Maillé M., Characterization of manufactured TiO2 nanoparticles, Journal of Physics, 2013; 429, 012012 (10p). |
[15] | Niu J. Yao B. Chen Y., Peng C., Yu X., Zhang J., Bai G., Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins, Applied Surface Science, 2013; 271, 39-44. |
[16] | Sikora A., Woszczyna M., Friedemann M., Ahlers F.J., Kalbac M., AFM diagnostics of graphene-based quantum Hall devices, Micron, 2012; 43, 479-486. |
[17] | Lau J.W., Shaw J.M., Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. Journal of Physics D: Applied Physics, 2011; 44, 303001 (p43). |
[18] | Shi L., Plyasunov S., Bachtold A., McEuen P.L., Majumdar A.: Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes, Applied Physics Letters, 2000; 77, 4295 (p3). |
[19] | Szymoński M., Goryl M., Krok F., Kolodziej J.J., Mongeot F.B.D, Metal nanostructures assembled at semiconductor surfaces studied with high resolution scanning probes, Nanotechnology, 2007; 18, 044016 (p7). |
[20] | Allers W., Schwarz A., Schwarz U.D., Wiesendanger R.: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures, Review of Scientific Instruments, 1998; 69, 221-225. |
[21] | Jaafar M., Go J., Gómez-Herrero J., Gil a, Ares P., Vázquez M., Asenjo a: Variable-field magnetic force microscopy, Ultramicroscopy, 2009; 109, 693 (p9). |
[22] | Sikora A., Correction of structure width measurements performed with a combined shear-force/tunneling microscope, Measurement Science and Technology, 2007; 2, 456–461. |
[23] | Dongmo S., Vautrot P., Bonnet N., Troyon M., Correction of surface roughness measurements in SPM imaging, Applied Physics A, 1998; 66, 819–823. |
[24] | Matyka K., Matyka M., Mróz I., Zalewska-Rejdak J., Ciszewski A., An AFM study on mechanical properties of native and dimethyl suberimidate cross-linked pericardium tissue, Journal of molecular recognition, 2007; 20, 524–530. |
[25] | Ptak A., Makowski M., Cichomski M., Characterization of nanoscale adhesion between a fluoroalkyl silane monolayer and a silicon AFM tip. Complex character of the interaction potential, Chemical Physics Letters, 2010; 489, 54–58. |
[26] | Sikora A., Bednarz L., Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy, Central European Journal of Physics, 2011; 9, 372–379. |
[27] | Magonov S.N.S., Elings V., Whangbo M.-H., Phase imaging and stiffness in tapping-mode atomic force microscopy, Surface Science, 1997; 375, L385–L391. |
[28] | Bar G., Brandsch R., Whangbo M.-H., Description of the frequency dependence of the amplitude and phase angle of a silicon cantilever tapping on a silicon substrate by the harmonic approximation, Surface Science, 1998; 411, L802–L809. |
[29] | Cleveland J.P., Anczykowski B., Schmid a. E., Elings V.B., Energy dissipation in tapping-mode atomic force microscopy, Applied Physics Letters, 1998; 72, 2613–2615. |
[30] | Anczykowski B., Gotsmann B., Fuchs H., Cleveland J.P., Elings V.B., How to measure energy dissipation in dynamic mode atomic force microscopy, Applied Surface Science, 1999; 140, 376–382. |
[31] | Sikora A., The method of minimizing the impact of local residual electrostatic charge on dimensional measurement accuracy in atomic force microscopy measurements, Measurement Science and Technology, 2011; 22, 94022 (p7). |
[32] | Chung J., Munz M., Sturm H., Stiffness variation in the interphase of amine-cured epoxy adjacent to copper microstructures, Surface and Interface Analysis, 2007; 39, 624-633. |
[33] | Radmacher M., Tillmann R.W., Gaub H.E., Imaging viscoelasticity by force modulation with the atomic force microscope, Biophysical Journal, 1992; 64, 735–742. |
[34] | Chuchmała A., Palewicz M., Sikora A., Iwan A., Influence of graphene oxide interlayer on PCE value of polymer solar cells, Synthetic Metals, 2013; 169, 33–40. |
[35] | Sikora A., Iwan A., AFM study of the mechanical wear phenomena of the polyazomethine with thiophene rings: Tapping mode, phase imaging mode and force spectroscopy, High Performance Polymers, 2012; 24, 218–228. |
[36] | Iwan A., Schab-Balcerzak E., Siwy M., Sikora A., Palewicz M., Janeczek H., Sibinski M., New aliphatic–aromatic tetraphenylphthalic-based diimides: Thermal, optical and electrical study, Optical Materials, 2011; 33, 958–967. |
[37] | Vijay M., Selvarajan V., Sreekumar K.P., Jiaguo Y., Shengwei L., Ananthapadmanabhan P.V., Characterization and visible light photocatalytic properties of nanocrystalline TiO2 synthesized by reactive plasma processing, Solar Energy Materials & Solar Cells, 2009; 93, 1540–1549. |
[38] | Wen-Chi H., Yu-Chun C., Hsin C., Ting-Ke T., Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane, Applied Surface Science, 2008; 255, 2205–2213. |
[39] | Yanqin W., Humin C., Yanzhong H., Jiming M., Weihua L., Shengmin C., Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles, Journal of Materials Science, 1999; 34, 3721–3729. |
[40] | Yan J., Wang B., Hai-Ping C., Shi-Guo D., Low temperature preparetion and photo-absorbance property of micron sizw Cu/nano-TiO2 composite particles, Journal of Inorganic Materials, 2010; 25, 370–374. |
[41] | Ishibai Y., Sato J., Nishikawa T., Miyagishi S., Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity, Applied Catalysis B: Environmental, 2008; 79, 117–121. |