[1] | A. R. Boccaccini, M. Erol, W. J. Stark, D. Mohn, Zh. Hong, J. F. Mano. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology;70[13]:1764-76, 2010. |
[2] | G. Chouzouri, M. Xanthos. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers, Acta Biomaterialia;3[5],745-56, 2007. |
[3] | P. Fabbri, V. Cannillo, A. Sola, A. Dorigato, F. Chiellini, Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering, Composites Science and Technology;70[13], 1869-78, 2010 |
[4] | E. Tamjid, R. Bagheri, M. Vossoughi, A. Simchi,Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites, Materials Science and Engineering: C,;31[7],1526-33, 2011. |
[5] | M. S. Mohammadi, I. Ahmed, B Marelli, Ch. Rudd, M.N. Bureau, Sh. N. Nazhat, Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations, Acta Biomaterialia;6[8], 3157-68, 2010 |
[6] | R L. Prabhakar, S. Brocchini, J. C. Knowles, Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass—polycaprolactone composites, Biomaterials, 26[15], 2209-18, 2005. |
[7] | S. I. Roohani-Estefani, S. Nouri-Khorasani, Z. F. Lu, R.C. Appleyard, H. Zreiqat, Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds, Acta Biomaterialia, 7[3], 1307-18, 2011. |
[8] | H.- H. Lee, H.-S. Yu, J.-H. Jang, H.-W. Kim, Bioactivity improvement of poly(ε-caprolactone) membrane with the addition of nanofibrous bioactive glass, Acta Biomaterialia, 4[3], 622-9, 2008. |
[9] | S.I. Roohani-Esfahani, S. Nouri-Khorasani, Z.F. Lu, M.H. Fathi, M. Razavi, R.C. Appleyard, et al., Modification of porous calcium phosphate surfaces with different geometries of bioactive glass nanoparticles, Materials Science and Engineering: C, 32[4], 830-9, 2012 |
[10] | B. Lei, K.-H. Shin, D.-Y. Noh, I.-H. Jo, Y.-H. Koh, H.-E. Kim, et al., Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering, Materials Science and Engineering: C, 33[3]:1102-8, 2013. |
[11] | M. G. Raucci, V. Guarino, L. Ambrosio. Hybrid composite scaffolds prepared by sol–gel method for bone regeneration, Composites Science and Technology, 70[13], 1861-8, 2010 |
[12] | M. Lebourg, J. Suay Antón, J.L. Gomez Ribelles, Characterization of calcium phosphate layers grown on polycaprolactone for tissue engineering purposes, Composites Science and Technology, 70[13], 1796-804, 2010 |
[13] | G. D. Guerra, P. Cerrai, M. Tricoli, A. Krajewski, A. Ravaglioli, M. Mazzocchi, et al., Composites between hydroxyapatite and poly(ε-caprolactone) synthesized in open system at room temperature, J Mater Sci: Mater Med, 17[1], 69-79, 2006 |
[14] | M. Lebourg, J. Suay Antón, J. L.G. Ribelles, Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth, J Mater Sci: Mater Med., 21[1], 33-44, 2010. |
[15] | S. Joughehdoust, A. Behnamghader, M. Imani, M. Daliri, A. H. Doulabi, E. Jabbari. A novel foam-like silane modified alumina scaffold coated with nano-hydroxyapatite –poly (ε-caprolactone fumarate) composite layer, Ceramics International, 39[1], 209-18, 2013. |
[16] | A. Rezaei, M.R. Mohammadi, In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process, Materials Science and Engineering: C;33[1], 390-6, 2013. |
[17] | M. Catauro, M. G. Raucci, F. De Gaetano, A. Marotta, Sol-gel synthesis, characterization and bioactivity ofpolycaprolactone /SiO2 hybrid material, J Mater Sci.,38[14], 3097-102, 2003 |
[18] | A. Schönbächlera, O. Glaied, J. Huwyler, M. Frenz, U. Pieles, Indocyanine green loaded biocompatible nanoparticles: Stabilization of indocyanine green (ICG) using biocompatible silica-poly(ε-caprolactone) grafted nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry, 261[1], 12-9, 2013. |
[19] | J. Wei, F. Chen, J-W. Shin, H. Hong, Ch. Dai, J. Su, et al., Preparation and characterization of bioactive mesoporous wollastonite – Polycaprolactone composite scaffold, Biomaterials, 30[6], 1080-8, 2009. |
[20] | Y. Lei, B. Rai, K.H. Ho, S.H. Teoh,In vitro degradation of novel bioactive polycaprolactone—20%tricalcium phosphate composite scaffolds for bone engineering, Materials Science and Engineering: C, 27[2], 293-8, 2007. |
[21] | M. Catauro, M. Raucci, G. Ausanio. , Sol–gel processing of drug delivery zirconia/polycaprolactone hybrid materials, J Mater Sci: Mater Med., 19[2], 531-40, 2008. |
[22] | Santis RD, M. Catauro, L. D. Silvio, L. Manto, M. G. Raucci, L. Ambrosio, et al. Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites, Biomaterials, 28[18], 2801-9, 2007. |
[23] | M. Kharaziha, M.H. Fathi, H. Edris. Development of novel aligned nanofibrous composite membranes for guided bone regeneration, Journal of the Mechanical Behavior of Biomedical Materials, 24, 9-20, 2013. |
[24] | A. K. Jaiswal, H. Chhabra, S. S. Kadam, K. Londhe, V. P. Soni, J. R. Bellare. Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: A comparative study, Materials Science and Engineering: C, 33[5], 2926-36, 2013. |
[25] | E. M. Carlisle., Silicon: A Possible Factor in Bone Calcification, Science, 16[167], 279-80, 1970 |
[26] | K. Schwarz, D. Milne, Growth-promoting Effects of Silicon in Rats, Nature, 239, 333 - 4, 1972. |
[27] | J. W. Reid, A. Pietak, M. Sayer, D. Dunfield, T. J. Smith, Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system, Biomaterials, 26[16], 2887-97, 2005. |
[28] | N. Y. Mostafa, A. A. Shaltout, L. Radev, H. M. Hassan, In vitro surface biocompatibility of high-content silicon - substituted calcium phosphate ceramics., Cent Eur J Chem., 11[2], 140-50, 2013. |
[29] | L. Radev, D. Zheleva, I. Michailova, In Vitro bioactivity of Polyurethane/85S Bioglass composite scaffolds, Cent Eur J Chem.11[9],1439-46, 2013. |
[30] | M. Tanahashi, T. Yao, T Kokubo, M. Minoda, T. Miyamoto, T. Nakamura, et al. Apatite Coating on Organic Polymers by a Biomimetic Proces, J Am Ceram Soc;77[11], 2805–8, 1994. |
[31] | G. Falini, S. Fermani, B. Palazzo, N. Roveri,Helical domain collagen substrates mineralization in simulated body fluid, J Biomed Mater Res A., 87[2], 470-6, 2008. |
[32] | Ch. Vaid, S. Murugavel, Alkali oxide containing mesoporous bioactive glasses: Synthesis, characterization and in vitro bioactivity, Materials Science and Engineering: C., 33[2], 959-68, 2013. |
[33] | D. Arcos, M. Vila, A. López-Noriega, F. Rossignol, E. Champion, F.J. Oliveira, et al. Mesoporous bioactive glasses: Mechanical reinforcement by means of a biomimetic process, Acta Biomaterialia, 7[7], 2952–9, 2011. |
[34] | V. Chiono, G. Vozzi, M. D'Acunto, S. Brinzi, C. Domenici, F. Vozzi, et al. Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications, Materials Science and Engineering: C., 29[7], 2174-87, 2009. |
[35] | J. Yu, P. Wu, Crystallization process ofpoly(ɛ-caprolactone)–poly(ethylene oxide)–poly(ɛ-caprolactone) investigated by infrared and two-dimensional infrared correlation spectroscopy, Polymer, 48[12], 3477-85, 2007. |
[36] | M. Catauro, M. G. Raucci, F. de Gaetano, A. Buri, A. Marotta, L. Ambrosio. Sol-gel synthesis, structure and bioactivity of Polycaprolactone/CaO • SiO2 hybrid material, Journal of Materials Science: Materials in Medicine,15[9], 991-5, 2004. |
[37] | F. Yang, J.G.C. Wolke, J.A. Jansen. Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering, Chemical Engineering Journal, 137[1],154-61, 2008. |
[38] | M. Lebourg, J. S. Anton, J. L. Gomez-Ribelles, Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth, J Mater Sci: Mater Med., 21, 33-44, 2010. |