International Journal of Modern Botany
p-ISSN: 2166-5206 e-ISSN: 2166-5214
2012; 2(5): 127-144
doi:10.5923/j.ijmb.20120205.02
Hana McFeeters, Robert L. McFeeters
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
Correspondence to: Robert L. McFeeters, Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Botrytis cinerea is a pathogenic fungus that has tremendous adverse impact on agriculture around the world. With susceptibility from seed to storage, highly adaptive nature under selective pressure, and ability to thrive at lower temperatures, B. cinerea is a formidable challenge. Technological advances in genetics, biochemistry, and biotechnology are providing new and unparalleled possibilities for treatment and management. With the resulting outburst of novel antifungal agents, it is difficult to keep abreast. This review not only catalogs and summarizes recent antifungal discoveries that target B. cinerea, but tries to give the reader a feel for how expansive the new possibilities are. Due to practical limitation, this review focuses on antifungal peptides/proteins and antifungal natural products. A brief perspective on emerging antifungals that hold potential to significantly impact the botryticide landscape is also included.
Keywords: Botrytis cinerea, Antifungal Peptides and Proteins, Natural Products, Emerging Antifungals
Cite this paper: Hana McFeeters, Robert L. McFeeters, Emerging Approaches to Inhibit Botrytis cinerea, International Journal of Modern Botany, Vol. 2 No. 5, 2012, pp. 127-144. doi: 10.5923/j.ijmb.20120205.02.
Figure 2. Structural diagram of (A) a rhamnolipid and (B) Neopeptins. Substituent 1 corresponds to Neopeptin A and substituent 2 to Neopeptin B |
|
[1] | Y. Elad, "Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection.", Biological Reviews, vol. 72, no. pp. 381-422, 1997 |
[2] | H. Forster and J. E. Adaskaveg, "Early brown rot infections in sweet cherry fruit are detected by monilinia-specific DNA primers", Phytopathology, vol. 90, no. 2, pp. 171-8, 2000 |
[3] | B. Williamson, "Latency and quiescence in survival and success of fungal plant pathogens", CAB International, Oxford, UK, vol. no. pp. 187-207, 1994 |
[4] | C. Brooks, Cooley J. S., "Temperature relations of apple-rot fungi", Journal of Agricultural Research, vol. 8, no. pp. 139-164, 1917 |
[5] | H.-J. Rosslenbroich and D. Stuebler, "Botrytis cinerea * history of chemical control and novel fungicides for its management", Crop Protection, vol. 19, pp. 557-561, 2000 |
[6] | P. Leruox, F. Chapeland, F. Arnold and M. Gredt, "ReHsistance de Botrytis cinerea aux fongicides. Du laboratoire au vignoble et vice versa.", Phytoma, vol. 504, pp. 62-67, 1998 |
[7] | J. Rueegg, H.P. Lauber, W. Siegfried, O. Viret and U. Hilber, "Experiences with anilinopyrimidines in Switzerland", Pesticide Outlook, vol. 8, no. 3, pp. 28-33, 1997 |
[8] | B. Forster and T. Staub, "Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea.", Crop Protection, vol. 15, no. 6, pp. 529- 537, 1996 |
[9] | U. W. Hilber and M. Hilber-Bodmer, "Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines", Plant Disease, vol. 82, no. 5, pp. 496-500, 1998 |
[10] | P. Leroux and M. Gredt, "Etude in vitro de la resistance de Botrytis cinerea aux fongicides anilinopyrimidines", Agronomie, vol. 15, pp. 367-370, 1995 |
[11] | A. Suty, R. Pontzen and K. Stenzel, "KBR2738: Mode d'action et sensibilite de Botrytis cinerea", Tours, France, pp. 1997 |
[12] | P. Leroux, "Chemical Control fo Botrytis and its Resistance to Chemical Fungicides", Springer, Dordrecht, The Netherlands, 2007 |
[13] | C. D. Fjell, R. E. Hancock and A. Cherkasov, "AMPer: a database and an automated discovery tool for antimicrobial peptides", Bioinformatics, vol. 23, no. 9, pp. 1148-55, 2007 |
[14] | Z. Wang and G. Wang, "APD: the Antimicrobial Peptide Database", Nucleic Acids Research, vol. 32, Database issue, pp. D590-2, 2004 |
[15] | M. Brahmachary, S. P. Krishnan, J. L. Koh, A. M. Khan, S. H. Seah, T. W. Tan, V. Brusic and V. B. Bajic, "ANTIMIC: a database of antimicrobial sequences", Nucleic Acids Research, vol. 32, no. Database Issue, pp. D586-9, 2004 |
[16] | T. B. Ng, "Antifungal proteins and peptides of leguminous and non-leguminous origins", Peptides, vol. 25, no. 7, pp. 1215-1222, 2004 |
[17] | J. H. Wong, T. B. Ng, R. C. Cheung, X. J. Ye, H. X. Wang, S. K. Lam, P. Lin, Y. S. Chan, E. F. Fang, P. H. Ngai, L. X. Xia, X. Y. Ye, Y. Jiang and F. Liu, "Proteins with antifungal properties and other medicinal applications from plants and mushrooms", Applied Microbiology and Biotechnology, vol. 87, no. 4, pp. 1221-35, 2010 |
[18] | C. P. Selitrennikoff, "Antifungal proteins", Applied and Environmental Microbiology, vol. 67, no. 7, pp. 2883-94, 2001 |
[19] | A. J. De Lucca, T. E. Cleveland and D. E. Wedge, "Plant-derived antifungal proteins and peptides", Canadian Journal of Microbiology, vol. 51, no. 12, pp. 1001-14, 2005 |
[20] | F. Marx, "Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application", Applied Microbiology and Biotechnology, vol. 65, no. 2, pp. 133-42, 2004 |
[21] | Marcello Donini, Chiara Lico, Selene Baschieri, Stefania Conti, Walter Magliani, Luciano Polonelli and Eugenio Benvenuto, "Production of an Engineered Killer Peptide in Nicotiana benthamiana by Using a Potato virus X Expression System", Applied and Environmental Microbiology, vol. 71, no. 10, pp. 6360-6367, 2005 |
[22] | H. P. van Esse, "Identification of HR-inducing cDNAs from plant pathogens via a Gateway(®)-compatible binary Potato virus X-expression vector", Methods in Molecular Biology, vol. 835, pp. 97-105, 2012 |
[23] | N. Cerovska, H. Hoffmeisterova, T. Moravec, H. Plchova, J. Folwarczna, H. Synkova, H. Ryslava, V. Ludvikova and M. Smahel, "Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants", Journal of Biosciences, vol. 37, no. 1, pp. 125-33, 2012 |
[24] | J. Kohl, M. Gerlagh, B. H. De Haas and M. C. Krijger, "Biological Control of Botrytis cinerea in Cyclamen with Ulocladium atrum and Gliocladium roseum Under Commercial Growing Conditions", Phytopathology, vol. 88, no. 6, pp. 568-75, 1998 |
[25] | P. Berto, M. H. Jijakli and P. Lepoivre, "Possible Role of Colonization and Cell Wall-Degrading Enzymes in the Differential Ability of Three Ulocladium atrum Strains to Control Botrytis cinerea on Necrotic Strawberry Leaves", Phytopathology, vol. 91, no. 11, pp. 1030-6, 2001 |
[26] | C. Metz, E. C. Oerke and H. W. Dehne, "Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum", Mededelingen, vol. 67, no. 2, pp. 353-9, 2002 |
[27] | B. S. Yun, E. M. Kwon, J. C. Kim and S. H. Yu, "Antifungal cyclopeptolide from fungal saprophytic antagonist Ulocladium atrum", Journal of Microbiology and Biotechnology, vol. 17, no. 7, pp. 1217-20, 2007 |
[28] | G. Emmer, M. A. Grassberger, J. G. Meingassner, G. Schulz and M. Schaude, "Derivatives of a novel cyclopeptolide. 1. Synthesis, antifungal activity, and structure-activity relationships", Journal of Medicinal Chemistry, vol. 37, no. 13, pp. 1908-17, 1994 |
[29] | X. Liu, J. Wang, P. Gou, C. Mao, Z. R. Zhu and H. Li, "In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A", International Journal of Food Microbiology, vol. 119, no. 3, pp. 223-9, 2007 |
[30] | K. Takesako, K. Ikai, F. Haruna, M. Endo, K. Shimanaka, E. Sono, T. Nakamura, I. Kato and H. Yamaguchi, "Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties", The Journal of Antibiotics, vol. 44, no. 9, pp. 919-24, 1991 |
[31] | M. Endo, K. Takesako, I. Kato and H. Yamaguchi, "Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae", Antimicrobial Agents Chemotherapy, vol. 41, no. 3, pp. 672-6, 1997 |
[32] | P. A. Aeed, C. L. Young, M. M. Nagiec and A. P. Elhammer, "Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A", Antimicrobial Agents Chemotherapy, vol. 53, no. 2, pp. 496-504, 2009 |
[33] | J. L. Slightom, B. P. Metzger, H. T. Luu and A. P. Elhammer, "Cloning and molecular characterization of the gene encoding the Aureobasidin A biosynthesis complex in Aureobasidium pullulans BP-1938", Gene, vol. 431, no. 1-2, pp. 67-79, 2009 |
[34] | K. Ikai, K. Takesako, K. Shiomi, M. Moriguchi, Y. Umeda, J. Yamamoto, I. Kato and H. Naganawa, "Structure of aureobasidin A", The Journal of Antibiotics, vol. 44, no. 9, pp. 925-33, 1991 |
[35] | R. Brown, J. Brennan and C. Kelley, "An antifungal agent identical with valinomycin", Antibiotics and Chemotherapy, vol. 12, pp. 482-7, 1962 |
[36] | J. B. Perkins, S. K. Guterman, C. L. Howitt, V. E. Williams, 2nd and J. Pero, "Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin", Journal of Bacteriology, vol. 172, no. 6, pp. 3108-16, 1990 |
[37] | H. Bruckner and T. Westhauser, "Chromatographic determination of L- and D-amino acids in plants", Amino Acids, vol. 24, no. 1-2, pp. 43-55, 2003 |
[38] | T. Robinson, "D-amino acids in higher plants", Life Sciences, vol. 19, no. 8, pp. 1097-1102, 1976 |
[39] | Y. Ren, G. A. Strobel, J. C. Graff, M. Jutila, S. G. Park, S. Gosh, D. Teplow, M. Condron, E. Pang, W. M. Hess and E. Moore, "Colutellin A, an immunosuppressive peptide from Colletotrichum dematium", Microbiology, vol. 154, no. Pt 7, pp. 1973-9, 2008 |
[40] | H. Skouri-Gargouri and A. Gargouri, "First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus", Peptides, vol. 29, no. 11, pp. 1871-7, 2008 |
[41] | H. Skouri-Gargouri, N. Jellouli-Chaker and A. Gargouri, "Factors affecting production and stability of the AcAFP antifungal peptide secreted by Aspergillus clavatus", Applied Microbiology and Biotechnology, vol. 86, no. 2, pp. 535-43, 2010 |
[42] | H. Skouri-Gargouri, M. Ben Ali and A. Gargouri, "Molecular cloning, structural analysis and modelling of the AcAFP antifungal peptide from Aspergillus clavatus", Peptides, vol. 30, no. 10, pp. 1798-804, 2009 |
[43] | A. B. Moreno, A. M. Del Pozo, M. Borja and B. S. Segundo, "Activity of the Antifungal Protein from Aspergillus giganteus Against Botrytis cinerea", Phytopathology, vol. 93, no. 11, pp. 1344-53, 2003 |
[44] | R. Campos-Olivas, M. Bruix, J. Santoro, J. Lacadena, A. Martinez del Pozo, J. G. Gavilanes and M. Rico, "NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism", Biochemistry, vol. 34, no. 9, pp. 3009-21, 1995 |
[45] | B. Lopez-Garcia, A. B. Moreno, B. San Segundo, V. De los Rios, J. M. Manning, J. G. Gavilanes and A. Martinez-del-Pozo, "Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris", Protein Expression and Purification, vol. 70, no. 2, pp. 206-10, 2010 |
[46] | Y. Liu, Z. Chen, T. B. Ng, J. Zhang, M. Zhou, F. Song and F. Lu, "Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916", Peptides, vol. 28, no. 3, pp. 553-9, 2007 |
[47] | D. Zhang, D. Spadaro, S. Valente, A. Garibaldi and M. L. Gullino, "Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens", International Journal of Food Microbiology, vol. 153, no. 3, pp. 453-64, 2012 |
[48] | M. Frias, C. Gonzalez and N. Brito, "BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host", The New Phytologist, vol. 192, no. 2, pp. 483-95, 2011 |
[49] | S. Rathi, H. McFeeters, R. L. McFeeters and M. R. Davis, "Purification and Phytotoxic Analysis of Botrytis cinerea Virulence Factors: New Avenues for Crop Protection", Agriculture, vol. 2, no. 3, pp. 154-164, 2012 |
[50] | J. S. Jeong, T. K. Mitchell and R. A. Dean, "The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence", FEMS Microbiology Letters, vol. 273, no. 2, pp. 157-65, 2007 |
[51] | Ana Segura, Manuel Moreno, Francisco Madueno, Antonio Molina and Francisco Garcia-Olmedo, "Snakin-1, a Peptide from Potato That Is Active Against Plant Pathogens", Molecular Plant-Microbe Interactions, vol. 12, no. 1, pp. 16-23, 1999 |
[52] | N. Kovalskaya and R. W. Hammond, "Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins", Protein Expression and Purification, vol. 63, no. 1, pp. 12-7, 2009 |
[53] | V. Nahirnak, N. I. Almasia, P. V. Fernandez, H. E. Hopp, J. M. Estevez, F. Carrari and C. Vazquez-Rovere, "Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition", Plant Physiology, vol. 158, no. 1, pp. 252-63, 2012 |
[54] | H. X. Wang and T. B. Ng, "Ascalin, a new anti-fungal peptide with human immunodeficiency virus type 1 reverse transcriptase-inhibiting activity from shallot bulbs", Peptides, vol. 23, no. 6, pp. 1025-9, 2002 |
[55] | X. Y. Ye and T. B. Ng, "Isolation of vulgin, a new antifungal polypeptide with mitogenic activity from the pinto bean", Journal of Peptide Science, vol. 9, no. 2, pp. 114-9, 2003 |
[56] | J. H. Wong and T. B. Ng, "Limenin, a defensin-like peptide with multiple exploitable activities from shelf beans", Journal of Peptide Science, vol. 12, no. 5, pp. 341-6, 2006 |
[57] | S. Wang, J. Lin, M. Ye, T. B. Ng, P. Rao and X. Ye, "Isolation and characterization of a novel mung bean protease inhibitor with antipathogenic and anti-proliferative activities", Peptides, vol. 27, no. 12, pp. 3129-36, 2006 |
[58] | Shaoyun Wang, Pingfan Rao and Xiuyun Ye, "Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency", Applied Microbiology and Biotechnology, vol. 82, no. 1, pp. 79-86, 2009 |
[59] | H. Wang and T. B. Ng, "Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum", Peptides, vol. 27, no. 1, pp. 27-30, 2006 |
[60] | Wentao Xu, Lu Wei, Wei Qu, Zhihong Liang, Jinai Wang, Xiaoli Peng, Yanan Zhang and Kunlun Huang, "A novel antifungal peptide from foxtail millet seeds", Journal of the Science of Food and Agriculture, vol. 91, no. 9, pp. 1630-1637, 2011 |
[61] | S. Monteiro, M. Barakat, M. A. Picarra-Pereira, A. R. Teixeira and R. B. Ferreira, "Osmotin and thaumatin from grape: A putative general defense mechanism against pathogenic fungi", Phytopathology, vol. 93, no. 12, pp. 1505-1512, 2003 |
[62] | J. J. Liu, R. Sturrock and A. K. Ekramoddoullah, "The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function", Plant Cell Reports, vol. 29, no. 5, pp. 419-36, 2010 |
[63] | M. L. Narasimhan, M. A. Coca, J. Jin, T. Yamauchi, Y. Ito, T. Kadowaki, K. K. Kim, J. M. Pardo, B. Damsz, P. M. Hasegawa, D. J. Yun and R. A. Bressan, "Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor", Molecular Cell, vol. 17, no. 2, pp. 171-80, 2005 |
[64] | M. Miele, S. Costantini and G. Colonna, "Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin", PLoS ONE, vol. 6, no. 2, pp. e16690, 2011 |
[65] | D. J. Yun, J. I. Ibeas, H. Lee, M. A. Coca, M. L. Narasimhan, Y. Uesono, P. M. Hasegawa, J. M. Pardo and R. A. Bressan, "Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility", Molecular Cell, vol. 1, no. 6, pp. 807-17, 1998 |
[66] | G. Guo, H. X. Wang and T. B. Ng, "Pomegranin, an antifungal peptide from pomegranate peels", Protein and Peptide Letters, vol. 16, no. 1, pp. 82-5, 2009 |
[67] | J. S. Moreira, R. G. Almeida, L. S. Tavares, M. O. Santos, L. F. Viccini, I. M. Vasconcelos, J. T. Oliveira, N. R. Raposo, S. C. Dias and O. L. Franco, "Identification of botryticidal proteins with similarity to NBS-LRR proteins in rosemary pepper (Lippia sidoides Cham.) flowers", Protein Journal, vol. 30, no. 1, pp. 32-8, 2011 |
[68] | J. Caplan, M. Padmanabhan and S. P. Dinesh-Kumar, "Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming", Cell Host & Microbe, vol. 3, no. 3, pp. 126-35, 2008 |
[69] | S. M. Collier and P. Moffett, "NB-LRRs work a 'bait and switch' on pathogens", Trends in Plant Science, vol. 14, no. 10, pp. 521-9, 2009 |
[70] | T. K. Eitas and J. L. Dangl, "NB-LRR proteins: pairs, pieces, perception, partners, and pathways", Current Opinion in Plant Biology, vol. 13, no. 4, pp. 472-7, 2010 |
[71] | A. de Beer and M. A. Vivier, "Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes", BMC Research Notes, vol. 4, no. 1, pp. 459, 2011 |
[72] | Wen-Yu Liu, Shu-Jiau Chiou, Chia-Yun Ko and Tsai-Yun Lin, "Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea", Journal of Plant Physiology, vol. 168, no. 4, pp. 375-381, 2011 |
[73] | O. Lorenzo, R. Piqueras, J. J. Sanchez-Serrano and R. Solano, "Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense", The Plant Cell, vol. 15, no. 1, pp. 165-78, 2003 |
[74] | K. C. McGrath, B. Dombrecht, J. M. Manners, P. M. Schenk, C. I. Edgar, D. J. Maclean, W. R. Scheible, M. K. Udvardi and K. Kazan, "Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression", Plant Physiology, vol. 139, no. 2, pp. 949-59, 2005 |
[75] | G. F. Wang, S. Seabolt, S. Hamdoun, G. Ng, J. Park and H. Lu, "Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis", Plant Physiology, vol. 156, no. 3, pp. 1508-19, 2011 |
[76] | S. Ferrari, J. M. Plotnikova, G. De Lorenzo and F. M. Ausubel, "Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4", The Plant Journal, vol. 35, no. 2, pp. 193-205, 2003 |
[77] | An Aerts, Karin Thevissen, Sara Bresseleers, Jan Sels, Piet Wouters, Bruno Cammue and Isabelle François, "Arabidopsis thaliana plants expressing human beta- defensin-2 are more resistant to fungal attack: functional homology between plant and human defensins", Plant Cell Reports, vol. 26, no. 8, pp. 1391-1398, 2007 |
[78] | G. Arenas, F. Guzman, C. Cardenas, L. Mercado and S. H. Marshall, "A novel antifungal peptide designed from the primary structure of a natural antimicrobial peptide purified from Argopecten purpuratus hemocytes", Peptides, vol. 30, no. 8, pp. 1405-11, 2009 |
[79] | E. Tapia, C. Montes, P. Rebufel, A. Paradela, H. Prieto and G. Arenas, "Expression of an optimized Argopecten purpuratus antimicrobial peptide in E. coli and evaluation of the purified recombinant protein by in vitro challenges against important plant fungi", Peptides, vol. 32, no. 9, pp. 1909-16, 2011 |
[80] | Ji Hyeong Baek and Si Hyeock Lee, "Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae)", Toxicon, vol. 55, no. 4, pp. 711-718, 2010 |
[81] | N. Maeda and N. Tamiya, "Three neurotoxins from the venom of a sea snake Astrotia stokesii, including two long-chain neurotoxic proteins with amidated C-termini", The Biochemical Journal, vol. 175, no. 2, pp. 507-17, 1978 |
[82] | C. N. Park, J. M. Lee, D. Lee and B. S. Kim, "Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea", Journal of Microbiology and Biotechnology, vol. 18, no. 5, pp. 880-4, 2008 |
[83] | A. L. Varnier, L. Sanchez, P. Vatsa, L. Boudesocque, A. Garcia-Brugger, F. Rabenoelina, A. Sorokin, J. H. Renault, S. Kauffmann, A. Pugin, C. Clement, F. Baillieul and S. Dorey, "Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine", Plant, Cell & Environment, vol. 32, no. 2, pp. 178-193, 2009 |
[84] | Marco Kruijt, Ha Tran and Jos M. Raaijmakers, "Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267", Journal of Applied Microbiology, vol. 107, no. 2, pp. 546-556, 2009 |
[85] | S. Joshi, C. Bharucha and A. J. Desai, "Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B", Bioresource Technology, vol. 99, no. 11, pp. 4603-8, 2008 |
[86] | Y. Toure, M. Ongena, P. Jacques, A. Guiro and P. Thonart, "Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple", Journal of Applied Microbiology, vol. 96, no. 5, pp. 1151-60, 2004 |
[87] | C. H. Liu, X. Chen, T. T. Liu, B. Lian, Y. Gu, V. Caer, Y. R. Xue and B. T. Wang, "Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components", Applied Microbiology and Biotechnology, vol. 76, no. 2, pp. 459-66, 2007 |
[88] | Y. S. Kim, H. M. Kim, C. Chang, I. C. Hwang, H. Oh, J. S. Ahn, K. D. Kim, B. K. Hwang and B. S. Kim, "Biological evaluation of neopeptins isolated from a Streptomyces strain", Pest Management Science, vol. 63, no. 12, pp. 1208- 14, 2007 |
[89] | M. Ubukata, M. Uramoto, J. Uzawa and K. Isono, "Structure and biological activity of neopeptins A, B, and C, inhibitors of fungal cell wall glycan synthesis", Agricultural and Biological Chemistry, vol. 50, pp. 357-365, 1986 |
[90] | Vivek Bajpai, Hak Kim, Ching Hou and Sun Kang, "Microbial conversion and in vitro and in vivo antifungal assessment of bioconverted docosahexaenoic acid (bDHA) used against agricultural plant pathogenic fungi", Journal of Industrial Microbiology & Biotechnology, vol. 36, no. 5, pp. 695-704, 2009 |
[91] | B. Teichmann, U. Linne, S. Hewald, M. A. Marahiel and M. Bolker, "A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis", Molecular Microbiology, vol. 66, no. 2, pp. 525-33, 2007 |
[92] | A. Mendez-Bravo, C. Calderon-Vazquez, E. Ibarra-Laclette, J. Raya-Gonzalez, E. Ramirez-Chavez, J. Molina-Torres, A. A. Guevara-Garcia, J. Lopez-Bucio and L. Herrera-Estrella, "Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana", PLoS ONE, vol. 6, no. 11, pp. e27251, 2011 |
[93] | Y. Brotman, A. Makovitzki, Y. Shai, I. Chet and A. Viterbo, "Synthetic ultrashort cationic lipopeptides induce systemic plant defense responses against bacterial and fungal pathogens", Applied and Environmental Microbiology, vol. 75, no. 16, pp. 5373-9, 2009 |
[94] | T. R. Costa, O. F. Fernandes, S. C. Santos, C. M. Oliveira, L. M. Liao, P. H. Ferri, J. R. Paula, H. D. Ferreira, B. H. Sales and M. do R. Silva, "Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil", Journal of Ethnopharmacology, vol. 72, no. 1-2, pp. 111-7, 2000 |
[95] | J. P. Benner, "Pesticidal compounds from higher plants", Pesticide Science, vol. 39, pp. 95-102, 1993 |
[96] | M. E. Guynot, A. J. Ramos, L. Seto, P. Purroy, V. Sanchis and S. Marin, "Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products", Journal of Applied Microbiology, vol. 94, no. 5, pp. 893-9, 2003 |
[97] | D. Kalemba and A. Kunicka, "Antibacterial and antifungal properties of essential oils", Current Medicinal Chemistry, vol. 10, no. 10, pp. 813-29, 2003 |
[98] | C. Bouchra, M. Achouri, L. M. Idrissi Hassani and M. Hmamouchi, "Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr", Journal of Ethnopharmacology, vol. 89, no. 1, pp. 165-9, 2003 |
[99] | Emine Mine Soylu, ≈ûener Kurt and Soner Soylu, "In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea", International Journal of Food Microbiology, vol. 143, no. 3, pp. 183-189, 2010 |
[100] | S. Behnam, M. Farzaneh, M. Ahmadzadeh and A. S. Tehrani, "Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens", Communications in Agricultural and Applied Biological Sciences, vol. 71, no. 3 Pt B, pp. 1321-6, 2006 |
[101] | I. Camele, V. De Feo, L. Altieri, E. Mancini, L. De Martino and G. Luigi Rana, "An attempt of postharvest orange fruit rot control using essential oils from Mediterranean plants", Journal of Medicinal Food, vol. 13, no. 6, pp. 1515-23, 2010 |
[102] | I. Camele, L. Altieri, L. De Martino, V. De Feo, E. Mancini and G. L. Rana, "In vitro control of post-harvest fruit rot fungi by some plant essential oil components", International Journal of Molecular Sciences, vol. 13, no. 2, pp. 2290-300, 2012 |
[103] | C. Romagnoli, R. Bruni, E. Andreotti, M. K. Rai, C. B. Vicentini and D. Mares, "Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L", Protoplasma, vol. 225, no. 1-2, pp. 57-65, 2005 |
[104] | N. Tabanca, B. Demirci, S. L. Crockett, K. H. Baser and D. E. Wedge, "Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils", Journal of Agricultural Food Chemistry, vol. 55, no. 21, pp. 8430-5, 2007 |
[105] | G. Wenqiang, L. Shufen, Y. Ruixiang and H. Yanfeng, "Comparison of composition and antifungal activity of Artemisia argyi Levl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide", Natural Product Research, vol. 20, no. 11, pp. 992-8, 2006 |
[106] | N. Tabanca, E. Bedir, D. Ferreira, D. Slade, D. E. Wedge, M. R. Jacob, S. I. Khan, N. Kirimer, K. H. Baser and I. A. Khan, "Bioactive constituents from Turkish Pimpinella species", Chemistry & Biodiversity, vol. 2, no. 2, pp. 221-32, 2005 |
[107] | T. Sekine, M. Sugano, A. Majid and Y. Fujii, "Antifungal effects of volatile compounds from black zira (Bunium persicum) and other spices and herbs", Journal of Chemical Ecology, vol. 33, no. 11, pp. 2123-32, 2007 |
[108] | S. Peighami-Ashnaei, M. Farzaneh, A. Sharifi-Tehrani and K. Behboudi, "Effect of essential oils in control of plant diseases", Communications in Agricultural and Applied Biological Sciences, vol. 74, no. 3, pp. 843-7, 2009 |
[109] | Vivek K. Bajpai, Savita Shukla and Sun Chul Kang, "Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L", Bioresource Technology, vol. 99, no. 18, pp. 8903-8908, 2008 |
[110] | E. K. Kulakiotu, C. C. Thanassoulopoulos and E. M. Sfakiotakis, "Biological Control of Botrytis cinerea by Volatiles of 'Isabella' Grapes", Phytopathology, vol. 94, no. 9, pp. 924-31, 2004 |
[111] | E. K. Kulakiotu, C. C. Thanassoulopoulos and E. M. Sfakiotakis, "Postharvest Biological Control of Botrytis cinerea on Kiwifruit by Volatiles of[Isabella] Grapes", Phytopathology, vol. 94, no. 12, pp. 1280-1285, 2002 |
[112] | K. Kishimoto, K. Matsui, R. Ozawa and J. Takabayashi, "Analysis of defensive responses activated by volatile allo-ocimene treatment in Arabidopsis thaliana", Phytochemistry, vol. 67, no. 14, pp. 1520-1529, 2006 |
[113] | K. Kishimoto, K. Matsui, R. Ozawa and J. Takabayashi, "Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea", Phytochemistry, vol. 69, no. 11, pp. 2127- 2132, 2008 |
[114] | S. O. Lee, H. Y. Kim, G. J. Choi, H. B. Lee, K. S. Jang, Y. H. Choi and J. C. Kim, "Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid", Journal of Applied Microbiology, vol. 106, no. 4, pp. 1213-9, 2009 |
[115] | Heidi Schalchli, Emilio Hormazabal, Jose Becerra, Michael Birkett, Marysol Alvear, Jorge Vidal and Andrés Quiroz, "Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi", Chemistry and Ecology, vol. 27, no. 6, pp. 503-513, 2011 |
[116] | R. Huang, G. Q. Li, J. Zhang, L. Yang, H. J. Che, D. H. Jiang and H. C. Huang, "Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia", Phytopathology, vol. 101, no. 7, pp. 859-69, 2011 |
[117] | R. Huang, H.J. Che, J. Zhang, L. Yang, D.H. Jiang and G.Q. Li, "Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Botrytis cinerea on post-harvest strawberry fruits", Biological Control, vol. 62, no. 1, pp. 53-63, 2012 |
[118] | H. M. Liu, J. H. Guo, Y. J. Cheng, P. Liu, C. A. Long and B. X. Deng, "Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections", Lettetters in Applied Microbiology, vol. 51, no. 3, pp. 258-63, 2010 |
[119] | H. J. Kim, H. J. Suh, C. H. Lee, J. H. Kim, S. C. Kang, S. Park and J. S. Kim, "Antifungal activity of glyceollins isolated from soybean elicited with Aspergillus sojae", Journal of Agricultural and Food Chemistry, vol. 58, no. 17, pp. 9483-7, 2010 |
[120] | X. J. Li, Q. Zhang, A. L. Zhang and J. M. Gao, "Metabolites from Aspergillus fumigatus, an Endophytic Fungus Associated with Melia azedarach, and Their Antifungal, Antifeedant, and Toxic Activities", Journal of Agricultural and Food Chemistry, vol. 60, no. 13, pp. 3424-31, 2012 |
[121] | K. Kojima, Y. S. Bahn and J. Heitman, "Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans", Microbiology, vol. 152, no. Pt 3, pp. 591-604, 2006 |
[122] | K. Yamashita, A. Shiozawa, S. Watanabe, F. Fukumori, M. Kimura and M. Fujimura, "ATF-1 transcription factor regulates the expression of ccg-1 and cat-1 genes in response to fludioxonil under OS-2 MAP kinase in Neurospora crassa", Fungal Genetics and Biology, vol. 45, no. 12, pp. 1562-9, 2008 |
[123] | D. Hagiwara, Y. Asano, J. Marui, A. Yoshimi, T. Mizuno and K. Abe, "Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress", Fungal Genetics and Biology, vol. 46, no. 11, pp. 868-78, 2009 |
[124] | R. Noguchi, S. Banno, R. Ichikawa, F. Fukumori, A. Ichiishi, M. Kimura, I. Yamaguchi and M. Fujimura, "Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa", Fungal Genetics and Biology, vol. 44, no. 3, pp. 208-18, 2007 |
[125] | R. R. Lew, "Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa", Fungal Genettics and Biology, vol. 47, no. 8, pp. 721-6, 2010 |
[126] | N. Ochiai, M. Fujimura, T. Motoyama, A. Ichiishi, R. Usami, K. Horikoshi and I. Yamaguchi, "Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa", Pest Management Science, vol. 57, no. 5, pp. 437-42, 2001 |
[127] | S. Y. Kim, Y. J. Ko, K. W. Jung, A. Strain, K. Nielsen and Y. S. Bahn, "Hrk1 plays both Hog1-dependent and -independent roles in controlling stress response and antifungal drug resistance in Cryptococcus neoformans", PLoS ONE, vol. 6, no. 4, pp. e18769, 2011 |
[128] | J. H. Kim, B. C. Campbell, N. Mahoney, K. L. Chan, R. J. Molyneux and G. S. May, "Enhancement of fludioxonil fungicidal activity by disrupting cellular glutathione homeostasis with 2,5-dihydroxybenzoic acid", FEMS Microbiology Letters, vol. 270, no. 2, pp. 284-90, 2007 |
[129] | J. H. Kim, B. C. Campbell, N. Mahoney, K. L. Chan, R. J. Molyneux and G. S. May, "Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response", Letters in Applied Microbiology, vol. 45, no. 2, pp. 134-41, 2007 |
[130] | J. H. Kim, B. C. Campbell, N. Mahoney, K. L. Chan, R. J. Molyneux and C. L. Xiao, "Use of chemosensitization to overcome fludioxonil resistance in Penicillium expansum", Letters in Applied Microbiology, vol. 51, no. 2, pp. 177-83, 2010 |
[131] | J. Heller, N. Ruhnke, J. Espino, M. Massaroli, I. G. Collado and P. Tudzynski, "The MAP kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response", Molecular Plant-Microbe Interactions, vol. 25, no.5, pp. 802-16, 2012 |
[132] | Nora Temme, Birgitt Oeser, Michelli Massaroli, Jens Heller, Adeline Simon, Isidro Gonzalez Collado, Muriel Viaud and Paul Tudzynski, "BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea", Molecular Plant Pathology, vol. 13, no. 7, pp. 704-18, 2012 |
[133] | S. Giesbert, J. Schumacher, V. Kupas, J. Espino, N. Segmueller, I. Haeuser-Hahn, P. Schreier and P. Tudzynski, "Identification of pathogenesis associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and a SPT3 transcription factor have significant impact on virulence", Molecular Plant-Microbe Interactions, vol. 25, no. 4, pp. 481-95, 2011 |
[134] | G. Loebenstein, "Local lesions and induced resistance", Advances in Virus Research, vol. 75, pp. 73-117, 2009 |
[135] | G. Loebenstein, D. R. David, D. Leibman, A. Gal-On, R. Vunsh, H. Czosnek and Y. Elad, "Tomato plants transformed with the inhibitor-of-virus-replication gene are partially resistant to Botrytis cinerea", Phytopathology, vol. 100, no. 3, pp. 225-9, 2010 |
[136] | A. Dehestani, K. Kazemitabar, G. Ahmadian, N. B. Jelodar, A. H. Salmanian, M. Seyedi, H. Rahimian and S. Ghasemi, "Chitinolytic and antifungal activity of a Bacillus pumilus chitinase expressed in Arabidopsis", Biotechnology Letters, vol. 32, no. 4, pp. 539-46, 2010 |
[137] | S. Koskela, P. P. Soderholm, M. Ainasoja, T. Wennberg, K. D. Klika, V. V. Ovcharenko, I. Kylanlahti, T. Auerma, J. Yli-Kauhaluoma, K. Pihlaja, P. M. Vuorela and T. H. Teeri, "Polyketide derivatives active against Botrytis cinerea in Gerbera hybrida", Planta, vol. 233, no. 1, pp. 37-48, 2011 |
[138] | S. Brauc, E. De Vooght, M. Claeys, J. M. Geuns, M. Hofte and G. Angenon, "Overexpression of arginase in Arabidopsis thaliana influences defence responses against Botrytis cinerea", Plant Biology, vol. 14 Suppl 1, no. pp. 39-45, 2012 |
[139] | S. I. Kirubakaran, S. M. Begum, K. Ulaganathan and N. Sakthivel, "Characterization of a new antifungal lipid transfer protein from wheat", Plant Physiology and Biochemistry, vol. 46, no. 10, pp. 918-27, 2008 |
[140] | G. Corrado, P. D. Bovi, R. Ciliento, L. Gaudio, A. Di Maro, S. Aceto, M. Lorito and R. Rao, "Inducible Expression of a Phytolacca heterotepala Ribosome-Inactivating Protein Leads to Enhanced Resistance Against Major Fungal Pathogens in Tobacco", Phytopathology, vol. 95, no. 2, pp. 206-15, 2005 |
[141] | Z. Zheng, A. Qualley, B. Fan, N. Dudareva and Z. Chen, "An important role of a BAHD acyl transferase-like protein in plant innate immunity", The Plant Journal, vol. 57, no. 6, pp. 1040-53, 2009 |
[142] | L. Saiz-Urra, A. J. Bustillo Perez, M. Cruz-Monteagudo, C. Pinedo-Rivilla, J. Aleu, R. Hernandez-Galan and I. G. Collado, "Global antifungal profile optimization of chlorophenyl derivatives against Botrytis cinerea and Colletotrichum gloeosporioides", Journal of Agricultural and Food Chemistry, vol. 57, no. 11, pp. 4838-43, 2009 |
[143] | H. J. Kim, H. J. Park and S. H. Choi, "Antimicrobial action effect and stability of nanosized silica hybrid Ag complex", Journal of Nanoscience and Nanotechnology, vol. 11, no. 7, pp. 5781-7, 2011 |
[144] | Dawn Worrall, Geoff H. Holroyd, Jason P. Moore, Marcin Glowacz, Patricia Croft, Jane E. Taylor, Nigel D. Paul and Michael R. Roberts, "Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens", The New Phytologist, vol. 193, no. 3, pp. 770-778, 2012 |
[145] | J. Pham, J. Liu, M. H. Bennett, J. W. Mansfield and R. Desikan, "Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection", The New Phytologist, vol. 194, no. 1, pp. 168-80, 2012 |
[146] | T. Shindo, J. C. Misas-Villamil, A. C. Horger, J. Song and R. A. van der Hoorn, "A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14", PLoS ONE, vol. 7, no. 1, pp. e29317, 2012 |
[147] | R. Guetsky, D. Shtienberg, Y. Elad and A. Dinoor, "Combining biocontrol agents to reduce the variability of biological control", Phytopathology, vol. 91, no. 7, pp. 621-7, 2001. |