International Journal of Modern Botany
p-ISSN: 2166-5206 e-ISSN: 2166-5214
2012; 2(4): 72-82
doi: 10.5923/j.ijmb.20120204.02
Daniel J. Bell 1, Francis A. Drummond 2, Lisa J. Rowland 1
1U.S. Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Centre, Genetic Improvement of Fruits and Vegetables Laboratory, Bldg. 010A, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
2University of Maine, School of Biology and Ecology, Deering Hall, Rm. 305, Orono, ME, 04469, USA
Correspondence to: Francis A. Drummond , University of Maine, School of Biology and Ecology, Deering Hall, Rm. 305, Orono, ME, 04469, USA.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
This study tested, at the within the field scale, if a positive fine-scale spatial genetic structure (FSGS) in lowbush blueberry could be detected. Using a contiguous design (all touching clones within 0.35 ha of one field) and a “neighbourhood” design (a few focal clones in two fields surrounded by their touching neighbour clones) we found, using EST-PCR (Expressed Sequence Tag-Polymerase Chain Reaction) markers, through non-parametric, distance based methods, significant positive spatial autocorrelation (SA) within the first distance class of 7.5 m (r = 0.067 + 0.022; P > 0.001). Two-dimensional local spatial autocorrelation revealed in both designs significant, positive SA in clusters of clones. Particularly, in the contiguous design, 32 of the 94 clones were found within the genetic similarity range of 0.53 – 0.72 (the range expected with dominant markers for half to full-sib relationships (0.65 – 0.80)). These related clusters displayed a patchy architecture interspersed with the balance of clones following a random distribution. In the “neighbourhood” design, AMOVA revealed significant between-field (Φpt = 1.6%) and within-field (Φpr = 3.7%) genetic differentiation. Two possible evolutionary hypotheses are discussed that render insight into the dynamics of how these fields developed and how the high levels of genetic diversity are maintained.
Keywords: Lowbush Blueberry, Relatedness, Fine-Scale Spatial Genetic Structure, EST-PCR Markers
Cite this paper: Daniel J. Bell , Francis A. Drummond , Lisa J. Rowland , "Fine-scale Spatial Genetic Structure Associated with Vaccinium angustifolium Aiton (Ericaceae)", International Journal of Modern Botany, Vol. 2 No. 4, 2012, pp. 72-82. doi: 10.5923/j.ijmb.20120204.02.
|
|
Figure 3. Geographic map in UTM units depicting the physical locations and relative genetic relationship of clones within each of the four ‘neighbourhoods’ at Blueberry Hill and Columbia; respectively. Closed circles denote the pivotal central clone surrounded by the nearest four or five touching neighbours. Stars represent clones that are significantly genetically similar at the P < 0.1 level |
[1] | Albert, T., O. Raspe, and A.L. Jacquemart. 2004. Clonal diversity and genetic structure in Vacciniummyrtillus populations from different habitats. Belg. J. Bot. 137: 155-162. |
[2] | Alberto, F., L. Gouveia, S. Arnaud-Haond, J.L. Perez-Llorens, C.M. Duarte, and E. Serrao. 2005. Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrassCymodoceanodosa. Mol. Ecol.14(9): 2669-2681. |
[3] | Alkharouf, N.W., A.L. Dhanaraj, D. Naik, C. Overall, B.F. Matthews, and L.J. Rowland. 2007. An online database for blueberry genomic data. BMC Plant Biol. 7: 5. |
[4] | Anderson, C. D., B.K. Epperson, M.-J. Fortin, R. Holderegger, P.M.A. James, M.S. Rosenberg, K.T. Scribner, and S. Spear. 2010. Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol. Ecol.19: 3565-3575. |
[5] | Aras, P., D. de Oliveira, and L. Savoie. 1996. Effect of a honeybee (Hymenoptera: Apidae) gradient on the pollination and yield of lowbush blueberry. J. Econ. Entomol. 89: 1080-1083. |
[6] | Barbujani, G. 1987. Autocorrelation of gene frequencies under isolation by distance. Genetics 117: 777-782. |
[7] | Bell, D.J., L.J. Rowland, J.J. Polashcock, and F.A. Drummond. 2008. Suitability of EST-PCR markers developed in highbush blueberry for genetic fingerprinting and relationship studies in lowbush blueberry and related species. J. Am. Soc. Hort. Sci. 133: 1-7. |
[8] | Bell, D.J. 2009. Spatial and genetic factors influencing yield in lowbush blueberry (VacciniumangustifoliumAit.) in Maine. PhD dissertation, School of Biology and Ecology, University of Maine, Orono, Maine, 144 pp. |
[9] | Bell, D. J., L.J. Rowland, D. Zhang, and F.A. Drummond. 2009. The spatial genetic structure of lowbush blueberry, Vacciniumangustifolium, in four fields in Maine. Botany 87: 932-946. |
[10] | Boches, P.S., N.V. Bassil, and L.J. Rowland. 2005. Microsatellite markers for Vaccinium from EST and genomic libraries. Mol. Ecol. Notes 5: 657-660. |
[11] | Borns, H.W.J. 2004. The deglaciation of Maine, U.S.A., in Ehlers, J., and Gibbard, P.L. (editors), Quaternary glaciations - extent and chronology, Part II (North America): Elsevier. 89-109. |
[12] | Burgher, K.L., A.R. Jamieson, and X. Lu. 2002. Genetic relationships among lowbush blueberry genotypes as determined by randomly amplified polymorphic DNA analysis. J. Am. Soc. Hort. Sci. 127: 98-103. |
[13] | Cavers, S., B. Degen, H. Caron, M.R. Lemes, R. Margis, F. Salgueiro, and A. J. Lowe. 2005. Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95: 281-289. |
[14] | Cliff, A.D. and J.K. Ord. 1981. Spatial Processes: Models and Applications. Pion, London |
[15] | Chung, M.G. and B.K. Epperson. 1999. Spatial genetic structure of clonal and sexual reproduction in populations of Adenophoragrandiflora(Campanulaceae). Evol. 53(4): 1068-1078. |
[16] | Chung, M.G. and B.K. Epperson. 2000. Clonal and spatial genetic structure in Euryaemarginata (Theaceae). Heredity 84: 170-177. |
[17] | Chung, M.Y., Y. Sue, J. Lopez-Pujol, J. D. Nason, and M.G. Chung. 2005. Clonal and fine-scale genetic structure in populations of a restricted Korean endemic, Hostajonesii(Liliaceae) and the implications for conservation. Ann. Bot. 96:279-288. |
[18] | Crawford, T.J. 1984. The estimation of neighbourhood parameters for plant populations. Heredity 52: 273-283. |
[19] | Delaplane, K.S., and D.F. Mayer. 2000. Crop pollination by bees. CABI Publishers., New York, NY |
[20] | Desjardins, E.C., and D. De Oliveira. 2006. Commercial frisky bumble bee, Bombus impatiens Cresson (Hymenoptera: Apidae), as a pollinator in lowbush blueberry fields, VacciniumangustifoliumAiton (Ericale: Ericaceae.J. Econ. Entomol. 99(2): 443-449. |
[21] | Double, M.C., R. Peakall, N.R. Beck, and A. Cockburn. 2005. Dispersal, philopatry and infidelity: dissecting local genetic structure in superb fairy-wrens (Maluruscyaneus). Evol. 59: 625-635. |
[22] | Drummond, F.A. 2012.Commercial bumble bee pollination of lowbush blueberry. Intl. J. Fruit Sci. 12(1-3): 54-64. |
[23] | Drummond, F.A. and C.S. Stubbs. 1997. Potential for management of the blueberry bee, Osmiaatriventris Cresson. Acta Hort.446: 77-83. |
[24] | Eaton, E.L. 1967. The relationship between seed number and berry weight in open pollinated highbush blueberries. HortSci. 2: 14-15. |
[25] | Epperson, B.K. 2005. Estimating dispersal from short distance spatial autocorrelation. Heredity 95: 7-15. |
[26] | Epperson, B.K. 2007. Plant dispersal, neighbourhood size and isolation by distance. Mol.Ecol. 16(18): 3854-3865. |
[27] | Eriksson, O., and H. Froborg. 1996. 'Windows of opportunity' for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can. J. Plant Sci.74: 1369-1374. |
[28] | Excoffier, L., P.E. Smouse, J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction sites. Genetics 131: 479-491. |
[29] | Greenleaf, S.S., N.M. Williams, R. Winfree, and C. Kremen. 2007. Bee foraging ranges and their relationship to body size. Oecol. 153:589-596. |
[30] | Hall, I.V. and L.E. Aalders. 1961. Cytotaxonomy of lowbush blueberries in eastern Canada. Am. J. Bot. 48: 199-201. |
[31] | Hall, I.V., L.E. Aalders, N.L. Nickerson, and S.P. Vander Kloet. 1979. The biological flora of Canada. 1. VacciniumangustifoliumAit., sweet lowbush blueberry. The Can Field Nat. 93: 415-430. |
[32] | Hill, N.M. and S.P. Vander Kloet. 2005. Longevity of experimentally buried seed in Vaccinium: relationship to climate, reproductive factors and natural seed banks. J. Ecol. 93: 1167-1176. |
[33] | Hokanson, K. and J. Hancock. 2000. Early-acting inbreeding depression in three species of Vaccinium(Ericaceae). Sex. Plant. Repro.13:145-150. |
[34] | Howe, H.F., J. Smallwood. 1982. Ecology of Seed Dispersal. Ann. Rev. Ecol. Syst. 2201-2228. |
[35] | Huff, D.R., R. Peakall, and P.E. Smouse. 1993. RAPD variation within and among natural populations of outcrossing buffalograss[Buchloedactyloides (Nutt.) Engelm. J. Theor. Appl. Gen. 86: 927-934. |
[36] | Kardi, T. 2009. Hierarchical Clustering Tutorial. http://people.revoledu.com/kardi/ tutorial/clustering/ |
[37] | Kimura, M., G.H. Weiss. 1964. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49(4): 561-576. |
[38] | Klimes, L., J. Klimesova , R. Hendriks, and J.M. van Groenendal. 1997. Clonal plant architecture: a comparative analysis of form and function. In: de Kroon, H., van Groenendal J.M. eds. The ecology and evolution of clonal plants. Leiden: Backhuys, 1-29. |
[39] | Korner, C. 2003. Alpine plant life, 2nd ed. Berlin: Springer. |
[40] | Krauss, S.L., T. He, and L.G. Barrett. 2009. Contrasting impacts of pollen and seed dispersal on spatial genetic structure in the bird-pollinated Banksiahookeriana. Heredity 102: 274-285. |
[41] | Kremer, A., H. Caron, S. Cavers, N. Colpaert, L. Ghesen, and R. Gribel. 2005. Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity 95: 274-280. |
[42] | Lang, C. and N.M. Laird. 2002. Power calculations for a general class of family-based association tests: dichotomous traits. Am. J. Human Gen. 71: 12-25. |
[43] | Levin, D.A. 1984. Inbreeding depression and proximity-dependent crossing success in Phlox drummondii. Evol. 38: 116-127. |
[44] | Lynch, M. 1988. Estimation of relatedness by DNA fingerprinting. Mol. Biol. and Evol. 5: 584-599. |
[45] | Lynch, M. 1990. The similarity index and DNA fingerprinting. Mol. Biol. and Evol. 7: 478-484. |
[46] | Malécot, G. 1948. Les Mathématiques de l’Hérédité. Masson, Paris. |
[47] | Matensanz, S., T.E. Gimeno, M. de la Cruz, A. Escudero, and F. Valladares. 2011. Competition may explain the fine scale spatial patterns and genetic structure of two co-occurring plant congeners. J. Ecol. 99(3): 838-848. |
[48] | Morton, N.E. 1973. Genetic structure of populations. University of Hawaii Press, Honolulu |
[49] | Myra, M. 2004. Reproductive polymorphism in the lowbush blueberry (VacciniumangustifoliumAiton). Thesis Acadia University, Wolfville, NS, Canada. |
[50] | Myra, M., K. MacKenzie, and S.P. Vander Kloet. 2004. Investigation of a possible sexual function specialization in the lowbush blueberry (VacciniumangustifoliumAit. Ericaceae). Sm. Fruits Rev. 3: 313-324. |
[51] | Namroud, M-C., A. Park, F. Tremblay, and Y. Bergeron. 2005. Clonal and spatial genetic structures of aspen (PopulustremuloidesMichx.). Mol. Ecol. 14(10): 2969-2980. |
[52] | Pandey, M. and O.P. Rajora. 2012. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thujaoccidentalis L.). BMC Evol. Biol. 12: 48-61. |
[53] | Parker K.C., A.J. Parker, M. Beaty, M.M. Fuller, T.D. Faust. 1997. Population structure and spatial pattern of two coastal populations of Ocala sand pine (Pinusclausa (Chapm. ex Engelm.) Vasey ex Sarg. var. clausa D. B. Ward). J. Torr. Bot. Soc. 124: 22–33. |
[54] | Peakall, R, M. Ruibal, and D.B. Lindenmayer. 2003. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattusfuscipes. Evol. 57:1182-1195. |
[55] | Peakall, R and P.E. Smouse. 2006. GenAlEx 6.1, Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295. |
[56] | Rohlf, F.J. 1998. NTSYS-PC: Numerical taxonomy and multivariate analysis system. Release 2.20j. Exeter Software, Setauket, N.Y. |
[57] | Rowland, L.J., A.L. Dhanaraj, J.J. Polashock, and R. Arora. 2003. Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortScience 38: 1428-1432. |
[58] | Rowland, L.J., S. Mehra, A. Dhanaraj, E.L. Ogden, J.P. Slovin, and M.K. Ehlenfeldt. 2003. Development of EST-PCR markers for DNA fingerprinting and genetic relationship studies in blueberry (Vaccinium, section Cyanococcus). J. Am. Soc. Hort. Sci.128: 682-690. |
[59] | Silvertown, J. 2001. Plants stand still but their genes don't: non-trivial consequences of the obvious. In: Silvertown J, Antonovics J (eds) Cambridge University Press: Cambridge. pp 347. |
[60] | Smagula, J.M. and D.E. Yarborough. 1990. Changes in the lowbush blueberry industry. Fruit Var. J. 44: 72-77. |
[61] | Smouse, P.E. and J.C. Long. 1992. Matrix correlation analysis in anthropology and genetics. Yearbook Phys. Anthro.35: 187-213. |
[62] | Smouse, P.E., J.C. Long, and R.R. Sokal. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Sys. Zool. 35: 627-632. |
[63] | Smouse, P.E. and R.R. Peakall. 1999. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82: 561-573. |
[64] | Smouse P.E., Peakall R., Gonzales E. 2008. A heterogeneity test for fine-scale genetic structure. Mol. Ecol. 17: 3389–3400. |
[65] | Sneath, P.H.A. and R.R. Sokal. 1973. Numerical Taxonomy. Freeman. San Francisco. 573 pp. |
[66] | Sokal, R.R. and N.L. Oden. 1978. Spatial autocorrelation in biology, 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 199-228. |
[67] | Sokal, R.R. and N.L. Oden. 1978. Spatial autocorrelation in biology, 1. Methodology. Biol. J. Linn. Soc. 10: 229-249. |
[68] | Sokal, R.R., N.L. Oden, and B.A. Thomson. 1998. Local spatial autocorrelation in biological variables. Biol. J. Linn. Soc. 65: 41-62. |
[69] | Stehlik, I. and R. Holderegger. 2001. Spatial genetic structure and clonal diversity of Anemone nemorosa in late successional deciduous woodlands of Central Europe. J. Ecol. 88(3): 424-435. |
[70] | Stubbs, C.S. and F.A. Drummond. 2000. Pollination of lowbush blueberry by Anthophorapallipesvillosulaand Bombus impatiens (Hymenoptera: Anthophoridae and Apidae). J. Kans. Entomol. Soc. 72: 330-333. |
[71] | Stubbs, C.S. and F.A. Drummond. 2001. Bombus impatiens (Hymenoptera: Apidae): An alternative to Apismellifera (Hymenoptera: Apidae) for lowbush blueberry pollination. J. Econ. Entomol. 94: 609-616. |
[72] | Stubbs, C.S., F.A. Drummond, and E.A. Osgood. 1994. Osmiaribiflorisbiedermanniiand Megachilerotundata (Hymenoptera: Megachilidae) introduced into the lowbush blueberry agroecosystem in Maine. J. Kans. Entomol. Soc. 67: 173-185. |
[73] | Trabaud L., C. Michels, J. Grosman. 1985. Recovery of burnt Pinushalepensis Mill. forests. II. Pine reconstitution after wildfire. For. Ecol. Manage. 113: 67–179. |
[74] | Vander kloet, S.P. 1976. A comparison of the dispersal and seedling establishment of Vacciniumangustifolium (the lowbush blueberry) in Leeds county, Ontario and Pictou county, Nova Scotia. The Can. Field Nat.90: 176-180. |
[75] | Vander kloet, S.P. 1978. Systematics, distribution, and nomenclature of the polymorphic Vacciniumangustifolium. Rhodora 80: 358-376. |
[76] | Vekemans, X. and O.J. Hardy. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13: 921-935. |
[77] | Wasser, N.M. 1982. A comparison of distances flown by different visitors to flowers of the same species. Oecol.55: 251-257. |
[78] | Wright, S. 1943. Isolation by distance. Genetics 28: 114-138. |