[1] | Ahmad, S., 2005, Materials by design - prospects and challenges, Indian J. Engineering & Materials Sciences, 12, 299-316. |
[2] | Ahmad, S., 2014, Organic semiconductors for device applications: current trends and future prospects, J. Polymer Engineering, 34(4), 279–338. |
[3] | Ahmad, S., 2016, Band-Structure-Engineered materials synthesis, nano crystals and hierarchical superstructures - Current status and future trend, Int. J. Material Science, 6(1): doi: 10.12783/ijmsci.2016.0601.01. |
[4] | Ahmad, S., 2016, Engineered nanomaterials for drug and gene deliveries - A Review, J. Nanopharmaceutics and Drug Delivery, 3(1), 1-50. |
[5] | Qi, K., Daoud, W. A., Xin, J. H., Mak, C. L., Tang, W., Cheung, W. P., 2006, Self-cleaning cotton. J. Mater. Chem., 16, 4567-74. |
[6] | Ahmad, S., 2015, Device applications of band-structure-engineered nanomaterials - Current status and future trend – Review, Int. J. Nanoelectronics and Mater., 8, 129-202. |
[7] | Ahmad, S., 2016, An affordable green energy source - Evolving through current developments of organic, dye sensitized, and perovskite solar cells, Int. J. Green Energy, 13(9), 859-90. |
[8] | Cognizant Report. Reaping the Benefits of the Internet of Things, Text @ www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf. |
[9] | Avalos, M., Salazar, P., Larios, V. M., Durán-Limón, H., 2016, Smart health methodology and services powered by leading edge cognitive services consumed in the cloud, Smart Cities Conf. (ISC2), 2016, IEEE Int.: 1-6. |
[10] | Ahmad, S., Hashim, U., 2012, Nano-herbals in human healthcare: A proposed research and development – Roadmap I, and II, ASEAN J. Sc. Technol. Dev., 29(1), 55-75. |
[11] | Ahmad, S., 2016, Curcumins - engineered drugs structure-activity relationships (SARs) - A review, IOSR J. Pharmacy and Biological Sciences (IOSR-JPBS); Accepted for publication. |
[12] | Miyao, T., Kaneko, H., Funatsu, K., 2016, Inverse QSPR/QSAR analysis for chemical structure generation (from y to x), J. Chem. Inf. Model., 56 (2), 286-99. |
[13] | Chen, F. F., Breedon, M., White, P., Chu, C., Mallick, D., Thomas, S., Sapper, E., Cole, I, 2016, Correlation between molecular features and electrochemical properties using an artificial neural network, Materials & Design, 112, 410-18. |
[14] | Tetko, I. V., Engkvist, O., Koch, U., Reymond, J. L., Chen, H., 2016, BIGCHEM: Challenges and opportunities for Big Data analysis in chemistry, Molecular Informatics, 35(11-12), 615-21. |
[15] | WEB-01. Internet of Things, Global ICT Standardization Forum for India, @ http://gisfi.org/Internet%20of %20Things%20-%20abstract.pdf. |
[16] | R. O. Topaloglu, Editor, 2015, More than Moore technologies for next generation computer design, 2015, Springer-Verlag New York. |
[17] | Södergård, C., Kuusisto, J.-M., Kopola, H., Alastalo, A., Erho, T., Hast, J., Hurme, E., Kemppainen, A., Kololuoma, T., Känsäkoski, M., Maaninen, A., Qvintus-Leino, P., Smolander, M., 2007, Printed Intelligence, @ www.vtt.fi/inf/julkaisut/muut/2007/PulPaper-07-SodergardKuusisto.pdf. |
[18] | WEB-02. Freedom of Design. Research, development and commercialization highlights in Printed Intelligence 2011-2012, @ http://www.vtt.fi/files/services/ele/printed_intelligence_2012_2.pdf. |
[19] | PROC-1, Proc. PRINSE'16 - 4th Printed Intelligence Industry Seminar, 7-8 June 2016, University of Oulu, Saalastinsali, Pentti Kaiterankatu, Oulu. |
[20] | WEB-03, Technical Research Centre of Finland (VTT), Intelligent electronics to become durable, flexible and functional through new technology, Science Daily, 18 January 2016, @ www.sciencedailycom/releases/2016/01/1601180845 01.htm. |
[21] | WEB-04, Green 3D-printing comes closer to reality, Updated – 4 March, 2017, @ www.aninews.in/newsdetail-OQ/MzAyNTY2/green-3d-printing-comes-closer-to-reality.html. |
[22] | WEB-05, Sekine, K., Energy-harvesting devices replace batteries in IoT sensors. Core and Code. @ https://0x9.me/6GIEO. |
[23] | WEB-06, Energy Harvesting: How we’ll build the Internet of Perpetual Things, July 2016, @ www.blueskycenter.com/energy-harvesting-how-well-build-the-internet-of-perpetual-things/. |
[24] | Pessina, L.-A., 8 July 2016, Graphene could revolutionize the Internet of Things. @ https://phys.org/news/2016-07-graphene-revolutionize-internet.html. |
[25] | Palladino, V., 28 February 2016, Hexoskin smart shirt reviewed: Measuring your vitals so you don’t have to, Text @ https://0x9.me/rKaqT. |
[26] | Williams, H. R., Trask, R. S., Bond, I. P., 2007, Design of vascular networks for self-healing sandwich structures, Proc. 1st Int. Conf. Self Healing Materials, 18-20 April 2007, Noordwijk aan Zee, The Netherlands. |
[27] | WEB-07, Smart materials for the internet of things, February 2017, Deutsche Telekom AG, Text @ https://m2m.telekom.com/m2m-blog/article/smart-materials-for-the-internet-of-things/. |
[28] | Gabbai, A., January 2015, Kevin Ashton describes the Internet of Things, @ https://0x9.me/CUoRq. |
[29] | WEB-08. HP Enterprise, Internet of Things – Today and tomorrow, Text @ www.arubanetworks.com/assets/eo/HPE_Aruba_IoT_Research_Report.pdf. |
[30] | C. A. Valhouli, 2010, The Internet of things: Networked objects and smart devices, The Hammersmith Group Research Report, 1-7, 2010. |
[31] | M. S. Mahmoud, 2016, Networked control systems analysis and design: An overview, Arabian J. Science and Engineering, 41, 711–758. |
[32] | Bawany, N. Z., Shamsi, J. A., Salah, K., 2017, DDoS attack detection and mitigation using SDN: methods, practices, and solutions, Arabian J. Science and Engineering, 42, 425–441. |
[33] | Bassi, A., Horn, G., 2008, Internet of Things in 2020: A Roadmap for the Future; European Commission: Information Society and Media: Brussels, Belgium, 2008. |
[34] | Yan, L., Zhang, Y., Yang, L. T., 2008, The Internet of things: from RFID to the next-generation pervasive networked systems: Aürbach Publications. |
[35] | Baoyun, W., 2009, Review on Internet of things, J. Electronic Measurement & Instr., 23, 1-7. |
[36] | Atzori, L., Iera, A., Morabito, G., 2010, The Internet of things: a survey. Computer Networks, 54, 2787-2805. |
[37] | Barnaghi, P., Sheth, A., Henson, C., 2013, From data to actionable knowledge: Big Data challenges in the Web of Things, IEEE Intelligent Systems, 28, 6-11. |
[38] | La, L., Guo, Q., Alonso, L., Zhang, F., 2014, Classifying XML data of semantic sensor networks, Arabian J. Science and Engineering, 39, 3733–3745. |
[39] | Navin, A. H., Navimipour, N. J., Rahmani, A. M., Hosseinzadeh, M., 2014, Expert Grid: new type of grid to manage the human resources and study the effectiveness of its task scheduler, Arabian J. Science and Engineering, 39, 6175–88. |
[40] | Shi, X., Fan, L., Ling, Y., He, J., Xiong, D., 2015, Dynamic and quantitative method of analyzing clock inconsistency factors among distributed nodes, Arabian J. Science and Engineering, 40, 519–530. |
[41] | Habiba, M., Islam, M. R., Shawkat Ali, A. B. M., Islam, M. Z., 2016, A new approach to access control in cloud, Arabian J. Science and Engineering, 41, 1015-30. |
[42] | Cai, Z., Zhang, Y., Wu, M., Cai, D., 2016, An entropy-robust optimization of mobile commerce system based on multi-agent system, Arabian J. Science and Engineering, 41, 3703-15. |
[43] | AlQahtani, S. A., 2016, Delay aware and users categorizing-based call admission control for multi-services LTE-A networks, Arabian J. Science and Engineering, 41, 3631-44. |
[44] | Jia, Y., Lin, G., Wang, J., Fang, J., Zhang, Y., 2016, Light condition estimation based on video fire detection in spacious buildings, Arabian J. Science and Engineering, 41, 1031-41. |
[45] | WEB-09, Harnessing the Internet of Things for global development, International Telecommunication Union (ITU), Place des Nations, CH-1211, Geneva 20, Switzerland. |
[46] | Akyildiz, I. F., Kasimoglu, I. H., 2004, Wireless sensor and actor networks: research challenges. Ad Hoc Network, 2(4), 351-67. |
[47] | Kumar, R., Kansal, A., Srivastava, M., 2004, Distributed control over ad-hoc sensor actuator networks, NESL Tech. Rep. NESL-TR-Jan-2004, Department of Electrical Engineering, UCLA. |
[48] | Cayirci, E., Coplu, T., Emiroglu, O., 2005, Power aware many to many routing in wireless sensor and actuator networks, Proc. 2nd European Workshop on Wireless Sensor Networks, 2005, 236-45. |
[49] | P. Pagilla, 2005, Real-time scheduling of sensor and actuator networks, Master thesis, Oklahoma State University. |
[50] | Hande, A., Polk, T., Walker, W., Bhatia, D., 2006, Self-powered wireless sensor networks for remote patient monitoring in hospitals, Sensors, 6, 1102-17. |
[51] | Li, S.-F., 2006, Wireless sensor actuator network for light monitoring and control application, Proc. 3rd IEEE Consumer Commu. & Networking Conf., 2, 974-8. |
[52] | Rezgui, A., Eltoweissy, M., 2007, Service-oriented sensor-actuator networks: promises, challenges, and the road ahead, Computer Commu., 30, 2627-48. |
[53] | Melodia, T., Pompili, D., Gungor, V. C., Akyildiz, I. F., 2007, Communication and coordination in wireless sensor and actuator networks, IEEE Trans. Mobile Computing, 6(10), 1116-29. |
[54] | Xia, F., Tian, Y-C, Li, Y, Sun, YY, (2007). Wireless sensor/actuator network design for mobile control applications, Sensors, 7: 2157-73. |
[55] | Wang, X, Ding, L., Bi, D., Wang, S., 2007, Energy-efficient optimization of reorganization-enabled wireless sensor networks, Sensors, 7, 1793-1816. |
[56] | Wang, X., Ma, J., Wang, S., Bi, D., 2007, Time series forecasting energy-efficient organization of wireless sensor networks, Sensors, 7, 1766-92. |
[57] | Wang, X., Wang, S., Bi, D., Ma, J., 2007, Distributed peer-to-peer target tracking in wireless sensor networks, Sensors, 7, 1001-27. |
[58] | Rosa, N., Cunha, P., 2007, Using LOTOS for formalizing wireless sensor network applications, Sensors, 7, 1447-61. |
[59] | Murray, R. M., Astrom, K. J., Boyd, S. P., Brockett, R. W., Stein, G., 2003, Control in an information rich world, IEEE Control Syst. Magazine, 23(2), 20-33. |
[60] | Ploplys, N., Kawka, P., Alleyne, A., 2004, Closed-loop control over wireless networks, IEEE Control Syst. Magazine, 24(3), 58-71. |
[61] | F. Xia, 2006, Feedback scheduling of real-time control systems with resource constraints, PhD thesis, Zhejiang University, Sensors, 2007, 7, 2172. |
[62] | Ahmad, S., 1995, Anisotropic etching of silicon, Proc. National Conf. On Recent Advances in Semiconductors, June 20-22, 1995, IIT, Delhi, India. |
[63] | Ahmad, S., Gopal, R., Mitra, M., Dwivedi, V. K., Kumar, M., 1996, Glass to silicon anodic bonding, SPIE - Smart Materials Structure and MEMS, 3321, 231-232. |
[64] | Ahmad, S., Dwivedi, V. K., 1996, Anisotropic chemical etching of silicon - Invited paper, SPIE - Smart Materials Structure and MEMS, 3321, 240-242. |
[65] | Dwivedi, V. K., Gopal, R., Ahmad, S., 2000, Fabrication of very smooth walls and bottoms of Silicon micro-channels for heat dissipation of semiconductor devices, Microelectronic J., 31, 405-10. |
[66] | Dwivedi, V. K., Gopal, R., Kumar, M., Ahmad, S., 2001, Thin silicon diaphragm formation by micromachining of (100) silicon for micro-electro-mechanical sensors, SPIE Int. Symp. MICRO/MEMS 2001, 17-19 December 2001, Adelaide, Australia. |
[67] | Saleh, S., Elsimary, H., Zaki, A., Ahmad, S., 2006, Design and fabrication of piezoelectric acoustic sensor, 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, 92-96. |
[68] | M. J. Madou, 2011, Fundamentals of Microfabrication and Nanotechnology, Vol. III: From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications, CRC Press, 2011 ISBN 1439895244. |
[69] | D. Kumar, S. Ahmad, 2017, Green intelligent nanomaterials by design (using nanoparticulate/2D-materials building blocks) - current developments and future trends, InTech Book Chapter, http://dx.doi.org/10.5772/intechopen.68434. |
[70] | Russell, L., Goubran, R., Kwamena, F., Knoefel, F., 2017, Sensor modality shifting in IoT deployment: measuring non-temperature data using temperature sensors, IEEE Sensors Applications Symposium (SAS), 13-15 March 2017. |
[71] | WEB-10, CISCO, What Is a Wireless Network? The Basics. @ https://0x9.me/fUPo3. |
[72] | Weinberg, H., February 1, 2002, MEMS Sensors are driving the automotive industry, Sensors, Online. @ www.sensorsmag.com/automotive/mems-sensors-are-driving-automotive-industry-1088. |
[73] | Huang, L., Pop, V., de Francisco, R., Vullers, R., Dolmans, G., de Groot, H., Imamura, K., 2010, Ultra low power wireless and energy harvesting technologies - an ideal combination. Communication Systems (ICCS), 2010, IEEE Int. Conf.; 17-19 November 2010; DOI: 10.1109/ICCS.2010.5686436. |
[74] | Felder, R. A., 1999, The distributed laboratory: point of care services with core laboratory management. Point of Care Testing, Edited by C. P. Price and J. Hicks, The American Association for Clinical Chemistry; Carstens; Decentralized versus Centralized Medication; @ www.carstens.com/industry-matters/decentralized-vs-centralized-medication-dispensing-cabinets/. |
[75] | WEB-11, The role of technology in modern terrorism; Posted in General Security, February 3, 2016, @ http://resources.infosecinstitute.com/the-role-of-technology-in-modern-terrorism/#gref. |
[76] | Christaki, E., 2015, New technologies in predicting, preventing and controlling emerging infectious diseases, Virulence, 6(6), 558-65. |
[77] | WEB-12, “More-than-Moore” - White Paper; Editors: W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, @ www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf. |
[78] | Södergård, C., Kuusisto, J.-M., Kopola, H., Alastalo, A., Erho, T., Hast, J., Hurme, E., Kemppainen, A., Kololuoma, T., Känsäkoski, M., Maaninen, A., Qvintus-Leino, P., Smolander, M. M., 2007, Printed Intelligence, @ www.vtt.fi/inf/julkaisut/muut/2007/PulPaper-07-SodergardKuusisto.pdf. |
[79] | WEB-13, HORIZON 2020 - Work Program 2016 - 2017 Cross-cutting activities (Focus Areas), @ https://0x9.me/VrDOn. |
[80] | D. Graham-Rowe, 2006, Liquid lenses make a splash, Nature Photonics Sample: 2–4; doi: 10.1038/nphoton.2006.2. |
[81] | Ganji, B. A., 2011, MEMS silicon microphone, crystalline silicon - properties and uses, S. Basu (Editor), ISBN: 978-953-307-587-7. |
[82] | WEB-14, Semiconductor Engineering, Manufacturing and Process Technology, New Embedded Memories Ahead, Text @http://semiengineering.com/new-embedded-memories-ahead/. |
[83] | Schlosser, S. W., Griffin, J. L., Nagle, D. F., Gregory, R., Ganger, G. R., 2000, Designing computer systems with MEMS-based storage, Proc. 9th Int. Conf. Architectural Support for Programming Languages and Operating Systems. Text @ www.ece.northwestern.edu/~jianwei/projects/MEMS/asplos2000.pdf. |
[84] | WEB-15, Smart Dust: BAA97-43 Proposal Abstract, POC: Kristofer, S. J., @ http://robotics.eecs.berkeley.edu/~pister/SmartDust/SmartDustBAA97-43-Abstract.pdf. |
[85] | Warneke, B., Last, M., Liebowitz, B., Pister, K. S. J., 2001, Smart Dust – communicating with a cubic millimeter computer, Computer, @ http://citeseerx.ist.psu.edu/viewdoc/download? |
[86] | Young, D. J., Zorman, C. A., Mehregany, M., 2004, MEMS/NEMS devices and applications. Springer Handbook of Nanotechnology, ISBN 978-3-540-01218-4. Springer-Verlag Berlin Heidelberg, 2004, p. 225. |
[87] | WEB-16, PRNewswire - Global market for MEMS and NEMS sensors 2017-2022: MEMS & NEMS Sensors are enabling smart devices and IoT applications across vertical markets, Research and Markets, @ https://0x9.me/UTO3Q. |
[88] | Nsofor, C. A., 2014, DNA microarrays and their applications in medical microbiology, Biotechnology and Molecular Biology Rev., 9(1), 1-11. |
[89] | Ahn, C. H., Choi, J.-W., 2010, Microfluidic devices and their applications to Lab-on-a-Chip, Springer Handbook of Nanotechnology Part B: 503-530. |
[90] | Roman, G. T., Kennedy, R. T., 2007, Fully integrated microfluidic separations systems for biochemical analysis, J. Chromatogr. A., 1168(1-2), 170-88. |
[91] | Livak-Dahl, E., Sinn, I., Burns, M., 2011, Microfluidic chemical analysis systems, Annu. Rev. Chem. Biomol. Eng., 2, 325-53. |
[92] | Villarroya, M., Verd, J., Teva, J., Abadal, G., Pérez, F., Esteve, J., Barniol, N., 2005, Cantilever based MEMS for multiple mass sensing. Conf. Paper. Source: IEEE Xplore, August 2005, DOI: 10.1109/RME.2005.1543038. |
[93] | Davisa, Z. J., Boisen, A., 2005, Aluminum nano cantilevers for high sensitivity mass sensors, Appl. Phys. Lett., 87, 013102. |
[94] | W. D. Callister, 1997, Materials Science and Engineering, an Introduction, 4th Edition, Wiley, New York. |
[95] | Gallantree, H. B., 1983, Review of transducer applications of polyvinylidene fluoride, Proc. IEEE, 130, 219. |
[96] | Zhao, X. M., Xia, Y., Schueller, O. J. A., Qin, D., Whitesides, G. M., 1998, Fabrication of microstructures using shrinkable polystyrene films, Sens. Actuators A, 65, 209. |
[97] | Manohara, M., Morikawa, E., Choi, J., Sprunger, P. T., 1999, Transfer by direct photo etching of poly (vinylidenefluouride) using X-rays, J. Microelectromech. Syst., 8, 417. |
[98] | Oh, K. W., Ahn, C. H., Roenker, K. P., 1999, Flip-chip packaging using micro machined conductive polymer bumps and alignment pedestals for MOEMS, IEEE J. Sel. Top. Quantum Electron., 5, 119-26. |
[99] | Oh, K. W., Ahn, C. H., 1999, A new flip-chip bonding technique using micro machined conductive polymer bumps, IEEE Trans. Adv. Packaging, 22, 586-91. |
[100] | Smela, E., Kallenbach, M., Holdenried, J., 1999, Electrochemically driven poly pyrrole bilayers for moving and positioning bulk micro machined silicon plates, J. IEEE/ASME J. Microelectromech. Syst., 8, 373. |
[101] | Jager, E. W. H., Smela, E., Inganäs, O., 2000, Micro fabricating conjugated polymer actuators, Science, 290, 1540. |
[102] | Lu, W., Fadeev, A. G., Qi, B., Smela, E., Mattes, B. R., Ding, J., Spinks, G. M., Mazurkiewicz, J., Zhou, D., Wallace, G. G., MacFarlane, D. R., Forsyth, S. A., Forsyth, M., 2002, Use of ionic liquids for π-conjugated polymer electrochemical devices, Science, 297, 983. |
[103] | Yang, L. J., Lin, W.-J., Yao, T.-J., Tai, Y.-C., 2003, Photo-patternable gelatin as protection layers in low-temperature surface micromachining, Sens. Actuators A, 103, 284. |
[104] | Bar-Cohen, Y., 2004, Turning heads, IEEE Spectrum 41, 28-33. |
[105] | Gall, K., Kreiner, P., Turner, D., Hulse, M., 2004, Shape-memory polymers for micro electromechanical systems,. J. Microelectromech. Syst., 13, 472. |
[106] | B. Shao, 2014, Fully printed chipless RFID tags towards item-level tracking applications. Doctoral Thesis. Text @ https://www.diva-portal.org/smash/get/diva2:700169/FULLTEXT01.pdf. |
[107] | Senadeera, P. M., Dogan, N. S., 2016, Emerging applications in RFID technology, Int. J. Computer Science and Electronics Engineering (IJCSEE), 4(2) (2016) ISSN 2320–4028 (Online). |
[108] | Wu, N. C., Nystrom, M. A., Lin, T. R., Yu, H. C., 2006, Challenges to global RFID adoption, Technovation, 26(12), 2006. |
[109] | van Lieshout, M., Grossi, L., Spinelli, G., Helmus, S., Kool, L., Pennings, L., Stap, R., Veugen, T., van der Waaij, B., Borean, C., 2007, RFID Technologies: Emerging Issues, Challenges and Policy Options, I. Maghiros, P, Rotter, M. v. Lieshout, Luxembourg, European Commission, Directorate-General Joint Research Centre, Institute for Prospective Technological Studies, 2007. |
[110] | Dobkin, D. M., 2007, The RF in RFID: passive UHF RFID in practice, Newnes, 2007. |
[111] | Chawla, V., Sam, H. D., 2007, An overview of passive RFID, IEEE Commun. Magazine, 45(9), 11-17. |
[112] | K. Finkenzeller, D. Müller, 2010, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication: Wiley, 2010. |
[113] | Harrop, P., Das, R., Rfid, F., 2005, Printed and Chipless RFID Forecasts, Technologies & Players, and Opportunities 2005-2015; IDTechEx, 2005. |
[114] | Subramanian, V., Chang, P. C., Huang, D., Lee, J. B., Molesa, S. E., Redinger, D. R., Volkman, S. K., 2005, All-printed RFID tags: materials, devices, and circuit implications, 19th Int. Conf. VLSI Design, Proc. 709-714. |
[115] | Subramanian, V., Chang, P. C., Lee, J. B., Molesa, S. E., Volkman, S. K., 2005, Printed organic transistors for ultra-low-cost RFID applications, IEEE Trans. Components and Packaging Technologies, 28(4), 742-747. |
[116] | Preradovic, S., Karmakar, N. C., 2010, Chipless RFID: Bar Code of the Future. Microwave Magazine, IEEE 11(7), 87-97. |
[117] | Botao, S., Qiang, C., Amin, Y., Mendoza, D. S., Ran, L., Li-Rong, Z., 2010, An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate, Solid State Circuits Conf. (A-SSCC), IEEE Asian, 1-4. |
[118] | Hartmann, C. S., Brown, P., Bellamy, J., 2004, Design of global SAW RFID tag devices, Proc. 2nd Int. Symp. Acoustic Wave Devices for Future Mobile Commun. Syst., Chinba, 15-19. |
[119] | Preradovic, S., Karmakar, N. C., 2010, Multi-resonator based chipless RFID tag and dedicated RFID reader, Microwave Symp. Digest (MTT), IEEE MTT-S Inter. 1520-1523. IEEE, 2010. |
[120] | Plessky, V. P., Reindl, L. M., 2010, Review on SAW RFID tags, ultrasonics, ferroelectrics and frequency control. IEEE Trans. 57(3): 654-68. |
[121] | Vena, E. P., Smail, T., 2011, RFID chipless tag based on multiple phase shifters, Microwave Symp. Digest (MTT), 2011 IEEE MTT-S Inter. 1-4. IEEE, 2011. |
[122] | Tedjini, S., 2016, Chipless RFID: State of the art and current developments, Text @ www.cost-ic1301.org/files/TS4_Bologna/2016_04_18_1500_Tedjini.pdf. |
[123] | Rida, L., Yang, R., Vyas, S., Bhattacharya, S., Tentzeris, M. M., 2007, Design and integration of inkjet-printed paper-based UHF components for RFID and ubiquitous sensing applications, Euro. Microwave Conf. 1-4, 724-727. |
[124] | Yang, L., Tentzeris, M. M., 2007, Design and characterization of novel paper based inkjet-printed RFID and microwave structures for telecommunication and sensing applications, IEEE/MTT-S Inter. Microwave Symp. Dig., (1-6), 1628. |
[125] | Preradovic, S., Karmakar, N. C., 2009, Design of fully printable planar chipless RFID transponder with 35-bit data capacity, Microwave Conf. EuMC 2009. European, 013-016. IEEE, 2009. |
[126] | Vena, E. P., Tedjini, S., 2011, Chipless RFID tag using hybrid coding technique, Microwave Theory and Techniques, IEEE Trans. MTT- 59(12), 3356-64. |
[127] | Zhang, L., Rodriguez, S., Tenhunen, H., Zheng, L.-R., 2006, An innovative fully printable RFID technology based on high speed time-domain reflections, High density microsystem design and packaging and component failure analysis, HDP'06. IEEE Conf., 166-170. |
[128] | Chamarti, K. V., 2006, Transmission delay line based ID generation circuit for RFID applications, Microwave and Wireless Comp. Lett., IEEE, 16(11), 588. |
[129] | Vemagiri, J., Chamarti, A., Agarwal, M., Varahramyan, K., 2007, Transmission line delay based radio frequency identification (RFID) tag, Microwave and Optical Technology Lett., 49(8), 1900. |
[130] | Mukherjee, S., 2007, Chipless radio frequency identification by remote measurement of complex impedance, European Conf. on Wireless Technologies, 32-35. |
[131] | Girbau, D., Lorenzo, J., Lazaro, A., Ferrater, C., Villarino, R., 2012, Frequency coded chipless RFID tag based on dual-band resonators, Antennas and Wireless Propagation Lett., IEEE, 11: 126. |
[132] | Zheng, L. L., Rodriguez, S., Zhang, L., Shao, B. T., Zheng, L. R., 2008, Design and implementation of a fully reconfigurable chipless RFID tag using inkjet printing technology, Proc. IEEE Inter. Symp. Circuits and Systems, 1524-27. |
[133] | Jalaly, I., Robertson, I. D., 2005, Capacitively-tuned split micro strip resonators for RFID barcodes, European Microwave Conf., 2. 4. IEEE, 2005. |
[134] | Jalaly, I., Robertson, I. D., 2005, RF barcodes using multiple frequency bands, Proc. IEEE MTT-S Inter. Microwave Symposium, 139–142, June 2005. |
[135] | Hyeong-Seok, L., Won-Gyu, O., Kyoung-Sub, M., Seong-Mo, M., JongWon, Y., 2010, Design of low-cost chipless system using printable chipless tag with electromagnetic code, Microwave and Wireless Components Letters, IEEE, 20(11), 640-642. |
[136] | Vena, E. P., Tedjini, S., 2012, Design of compact and auto-Compensated Single-Layer Chipless RFID Tag, MTT IEEE Trans., 60(9), 2913-24. |
[137] | Preradovic, S., Balbin, I., Karmakar, N. C., Swiegers, G., 2008, Chipless frequency signature based RFID transponders, European Microwave Week 2008 Conf. Proc. 302-305. UK: Horizon House Publications. |
[138] | Katz, H. E., 2004, Recent advances in semiconductor performance and printing processes for organic transistor-based electronics, Chem. Mater., 16(23), 4748-56. |
[139] | de Gans, J., Duineveld, P. C., Schubert, U. S., 2004, Inkjet printing of polymers: state of the art and future developments, Adv. Mater., 16(3), 203-213. |
[140] | Subramanian, V., Frechet, J. M. J., Chang, P. C., Huang, D. C., Lee, J. B., Molesa, S. E., Murphy, A. R., Redinger, D. R., 2005, Progress toward development of all-printed RFID tags: Materials, processes, and devices, IEEE Proc., 93(7) 1330-1338. |
[141] | Subramanian, V., Chang, J. B., de la Fuente Vornbrock, A., Huang, D. C., Jagannathan, L., Liao, F., Mattis, B., Molesa, S., Redinger, D. R., Soltman, D., Volkman, S. K., Qintao, Z., 2008, Printed electronics for low-cost electronic systems: Technology status and application development, 34th European Solid-State Circuits Conf., 17-24. |
[142] | Edwards, J., 2015, Internet of Things breathe new life into RFID technology, @ www.zatar.com/news/internet-of-things-breathes-new-life-into-rfid-technology. |
[143] | WEB-17, Smart Buildings. Is the role of RFID in the Internet of Things being underestimated? 9 May, 2016, Text @ www.memoori.com/role-rfid-internet-things-underestimated/. |
[144] | Eperon, G. E., Leijtens, T., Bush, K. A., Prasanna, R., Green, T., Wang, J. T.-W., McMeekin, D. P., Volonakis, G., Milot, R. L., May, R., Palmstrom, A., Slotcavage, D. J., Belisle, R. A., Patel, J. B., Parrott, E. S., Sutton, R. J., Ma, W., Moghadam, F., Conings, B., Babayigit, A., Boyen, H.-G., Bent, S., Giustino, F., Herz, L. M., Johnston, M. B., McGehee, M. O., Snaith, H. J., 2016, Perovskite-perovskite tandem photo voltaics with optimized band gaps, Science, October 2016 DOI: 10.1126/science.aaf9717. |
[145] | WEB-18, The University of New South Wales, Perovskite solar cells hit new world efficiency record, Science Daily, 2 December, 2016, Text @ www.sciencedaily.com/releases/2016/12/161201114543.htm. |
[146] | Svenselius, M. W., 2016, Solar cell première, 22 June, 2016, Text @ https://liu.se/en/article/solar-cell-premiere. |
[147] | Selzer, F., Weiß, N., Kneppe, D., Bormann, L., Sachse, C., Gaponik, N., Eychmüller, A., Leo, K., Müller-Meskamp, L., 2015, A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photo voltaics, Nanoscale, 7, 2777-83. |
[148] | WEB-19, Project Final Report; Grant No: 314068; Project: TREASORES - Transparent Electrodes for Large Area, Large Scale Production of Organic Optoelectronic Devices; Funding Scheme: FP7-2012-NMP-ICT-FoF; 1st May 2014 to 31st October 2015, Text @ http://treasores.eu/wp-content/uploads/2012/11/Final_public_summary_TREASORES.Pdf. |
[149] | W. Da Silva, 17 May 2016, Milestone in solar cell efficiency by UNSW engineers, Text @ http://newsroom.unsw.edu.au/news/science-tech/milestone-solar-cell-efficiency-unsw-engineers. |
[150] | WEB-20, University of New South Wales, Milestone in solar cell efficiency achieved: New record for unfocused sunlight edges closer to theoretic limits, ScienceDaily, 17 May 2016, Text @ www.sciencedaily.com/releases/2016/05/160517121811.htm. |
[151] | Williams, M., 2015, Printed organic solar cells and LED, Text @ https://herox.com/news/282-printed-organic-solar-cells-and-led. |
[152] | Wesoff, E., 2016, A big bet that organic solar cells will finally reach economical mass production, Text @ https://0x9.me/V0TvB. |
[153] | Mitchell, R., 2017, New doping process for organic photo voltaic cells could change the solar energy industry, Text @ https://www.allaboutcircuits.com/news/new-simple-doping-process-for-organic-photo-voltaic-cells/. |
[154] | WEB-21, Innovation - Flexible electronics: a better way of making perovskite solar cells, Text @ www.csiro.au/en/Research/MF/Areas/Innovation/Flex-Electronics/ Printable-perovskite-solar-cells. |
[155] | WEB-22, EMPA. New superstrate material enables flexible, lightweight and efficient thin film solar modules, ScienceDaily, 9 June 2011, www. ScienceDaily, com/releases/2011/06/110609084806.htm. |
[156] | Yu, Z., Liu, W., Fu, W., Zhang, Z., Yang, W., Wang, S., Li, H., Xu, M., Chen, H., 2016, An aqueous solution-processed CuOx film as an anode buffer layer for efficient and stable organic solar cells, J. Mater. Chem. A, 4, 5130-6. |
[157] | Chang, C.-Y., Huang, W.-K., Wu, J.-L., Chang, Y.-C., Lee, K.-T., Chen, C.-T., 2016, Room temperature solution-processed n-doped Zirconium Oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells, Chem. Mater., 28 (1), 242-51. |
[158] | Chang, C.-Y., Huang, W.-K., Chang, Y.-C., 2016, Highly efficient and long-term stable perovskite solar cells enabled by a cross-linkable n-doped hybrid cathode interfacial layer, Chem. Mater., 28 (17), 6305-12. |
[159] | Zhang, F., Shi, W., Luo, J., Pellet, N., Yi, C., Li, X., Zhao, X., Dennis, T. J. S., Li, X., Wang, S., Xiao, Y., Zakeeruddin, S. M., Bi, D., Grätzel, M., 2017, Isomer-pure Bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability, Adv. Mater., 29(17). doi: 10.1002/adma.201606806. |
[160] | Zhang, X., Liu, H., Wang, W., Zhang, J., Xu, B., Karen, K. L., Zheng, Y., Liu, S., Chen, S., Wang, K., Sun, X. W., 2017, Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic–inorganic mixed cations, DOI: 10.1002/adma.201606405. |
[161] | Mohammed, M. G., Kramer, R., 2017, All-Printed Flexible and Stretchable Electronics; DOI: 10.1002/adma.201604965. |
[162] | Yang, S., Fu, W., Zhang, Z., Chen, H., Li, C.-Z., 2017, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite, J. Mater. Chem. A, Advance Article; DOI: 10.1039/C7TA00366H. |
[163] | Chang, C.-Y., Tsai, B.-C., Hsiao, Y.-C., Huang, Y. C., Tsao, C.-S., 2016, High-performance printable hybrid perovskite solar cells with an easily accessible n-doped fullerene as a cathode interfacial layer, Phys. Chem. Chem. Phys., 18, 31836-44. |
[164] | Song, T.-B., Yokoyama, T., Stoumpos, C. C., Logsdon, J., Cao, D. H., Wasielewski, M. R., Aramaki, S., Kanatzidis, M. G., 2017, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells, J. Am. Chem. Soc., 139 (2), 836-42. |
[165] | Hu, H., Dong, B., Wei Zhang, W., 2017, Low-toxic metal halide perovskites: opportunities and future challenges, J. Mater. Chem. A, Advance Article; DOI: 10.1039/C7TA00269F. |
[166] | WEB-23, S. Duquet, Director, Strategic Marketing, Leddartech, Enabling detection and ranging for the IoT and beyond, Text @ http://leddartech.com/enabling-detection-and-ranging-for-the-internet-of-things-and-beyond/. |
[167] | Kleinfelder, S., Bieser, F., Chen, Y., Gareus, R., Matis, H. S., Oldenburg, M., Retiere, F., Ritter, H. G., Wieman, H. H., Yamamoto, E., 2004, Integrated Circuits (ICs) - Novel integrated CMOS sensor circuits, IEEE Trans. Nuclear Science, 51(5), 2328-36. |
[168] | Chen, Y., Lu, S., Fu, C., Blaauw, D., Dreslinski Jr, R., Mudge, T., Kim, H.-S., 2017, A Programmable Galois field processor for the Internet of Things, Proc. ISCA ’17, Toronto, June 24-28, 2017; https://doi.org/10.1145/3079856.3080227. |
[169] | Nastic, S., Sehic, S., Vogler, M., Truong, H.-L., Dustdar, S., 2013, PatRICIA - A Novel Programming Model for IoT Applications on Cloud Platforms. Published in: Service-Oriented Computing and Applications (SOCA), IEEE 6th Int. Conf. 16-18 December 2013. |
[170] | Meola, A., 2016, The roles of cloud computing and fog computing in the Internet of Things revolution, Text @ http://www.businessinsider.com/internet-of-things-cloud-computing-2016-10?IR=T. |
[171] | Huria, H., 2014, Connecting to the World: Internet of Things, by contributions, Cannon Writer March 16, 2014, Text @ http://cannon.skule.ca/connecting-to-the-world-internet-of-things/. |
[172] | WEB-24, The MIT Technology Review, View from the marketplace. The Internet of Things: Roadmap to a connected world, Text @ www.technologyreview.com/s/601013/the-internet-of-things-roadmap-to-a-connected-world/. |
[173] | WEB-25, IoT Roadmap and Reports, Text @ www.in.gov/iot/2466.htm. |
[174] | WEB-26, Nokia and Airtel partner to create roadmap for 5G and IoT applications. Nokia and Airtel will leverage Nokia's 5G FIRST end-to-end 5G solution including AirScale radio access portfolio and AirFrame data center platform, ETtech, March 01, 2017, 17:12 IST, @ https://0x9.me/fpFJt. |
[175] | Kopola, H., 2011, Printed Intelligence from research to industrialization. Workshop on Printed Intelligence towards Applications, October 3, 2011, Helsinki. |
[176] | Stoppa, M., Chiolerio, A., 2014, Wearable electronics and smart textiles: a critical review, Sensors, 14, 11957-92. |
[177] | Langereis, G. R., Bouwstra, S., Chen, W., 2012, Sensors, actuators, and computing architecture systems for smart textiles, Smart Textiles for Protection; R. Chapman, Editor, Woodhead Publishing: Cambridge, UK, 1, 190–213. |
[178] | Custodio, V., Herrera, F. J., López, G., Moreno, J. I., 2012, A review on architectures and communications technologies for wearable health-monitoring systems, Sensors, 12, 13907-46. |
[179] | Coosemans, J., Hermans, B., Puers, R., 2006, Integrating wireless ECG monitoring in textiles, Sens. Actuators A Phys., 130-1, 48-53. |
[180] | Meyer, J., Lukowicz, P., Tröster, G., 2006, Textile pressure sensor for muscle activity and motion detection, Proc. 10th IEEE Int. Symp. Wearable Computers, Montreux, Switzerland, 11–14 October 2006. |
[181] | Linz, T., Gourmelon, L., Langereis, G., 2007, Contactless EMG sensors embroidered onto textile, Proc. 4th Int. Workshop on Wearable and Implantable Body Sensor Networks, Aachen, Germany, 26–28 March 2007, 13, 29–34. |
[182] | Sibinski, M., Jakubowska, M., Sloma, M., 2010, Flexible temperature sensors on fibers, Sensors, 10, 7934-46. |
[183] | Löfhede, J., Seoane, F., 2010, Thordstein, Soft textile electrodes for EEG monitoring, Proc. 10th IEEE Int. Conf. Information Tech. and Applications in Biomedicine (ITAB), Corfu, Greece, 2–5 November 2010, 1–4. |
[184] | Löfhede, J., Seoane, F., Thordstein, M., 2012, Textile electrodes for EEG recording - a pilot study, Sensors, 12, 16907-19. |
[185] | Omenetto, F., Kaplan, D., Amsden, J., Dal Negro, L., 2014, Silk based bio-photonic sensors, Patent US 2013/0330710, 2013, Sensors, 14, 11986. |
[186] | Zadeh, E., 2006, Flexible biochemical sensor array for laboratory-on-chip applications, Proc. Int. Workshop on Computer Architecture for Machine Perception and Sensing, Montreal, QC, Canada, 18–20, 65–66. |
[187] | Coyle, S., Lau, K. T., Moyna, N., O'Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M. G., De Rossi, D. E., Taccini, N., Paradiso, R., Porchet, J. A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Revol-Cavalier, F., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De-Moncuit, H., Bini, C., 2010, BIOTEX - Biosensing textiles for personalized healthcare management, IEEE Trans. Inf. Technol. Biomed., 14(2), 364-70. |
[188] | Baurley, S., 2004, Interactive and experiential design in smart textile products and applications. Pers. Ubiquitous Comput., 8, 274-81. |
[189] | Black, S., 2007, Trends in smart medical textiles, Smart textiles for medicine and healthcare: materials, systems and applications; L. van Langenhove, Ed., University of Ghent: Ghent, Belgium, 1, 10–22. |
[190] | Vatansever, D., Siores, E., Hadimani, R., Shah, T., 2011, Smart woven fabrics in renewable energy generation, Advances in Modern Woven Fabrics Technology, S. Vassiliadis, Ed., InTech, Rijeka, Croatia, 2011, 23–38. |
[191] | Edmison, J., Jones, M., Nakad, Z., Martin, T., 2002, Using piezoelectric materials for wearable electronic textiles, Proc. 6th Int. Symp. Wearable Computers (ISWC), Seattle, WA, USA, 7–10 October 2002, 41-8. |
[192] | Bedeloglu, A., Demir, A., Bozkurt, Y., Sariciftci, N. S., 2009, A photo voltaic fiber design for smart textiles, Text. Res. J. 80, 1065-74. |
[193] | Pacelli, M., Loriga, G., Taccini, N., Paradiso, R., 2007, Sensing fabrics for monitoring physiological and biomechanical variables: e-textile solutions, Proc. IEEE/EMBS Int. Summer School on Medical Devices and Biosensors, St. Catharine‘s College, Cambridge, UK, 19–22 August 2007, 1–4. |
[194] | Dias, T., 2012, Developments and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination: El Yarns and Fabrics, Text. Res. J., 82, 1164-76. |
[195] | Janietz, S., Gruber, B., Schattauer, S., Schulze, K., 2012, Integration of OLEDs in textiles, Adv. Sci. Technol., 80, 14-2. |
[196] | Salonen, P., Hurme, L., 2003, A novel fabric WLAN antenna for wearable applications, Proc. IEEE Int. Symp. Antennas and Propagation Society, Columbus, OH, USA, 22–27 June 2003, 2, 700–703. Sensors, 2014, 14, 11987. |
[197] | Munro, B. J., Steele, J. R., Campbell, T. E., Wallace, G. G., 2005, Wearable textile biofeedback systems: Are they too intelligent for the wearer? Wearable eHealth systems for personalized health management: state of the art and future challenges, A. Lymberis, D. De Rossi, Editors, IOS Press - STM Publishing House: Amsterdam, The Netherlands, 2005; 108, 271–277. |
[198] | WEB-27, Embroidery, 2014, Popular embroidery techniques used to decorate fabrics, @ http://nanetteparker.hubpages.com/hub/Popular-Embroidery-Techniques-Used-to-Decorate-Fabrics. |
[199] | WEB-28, Creative Sewing, 2014, Text @ http://www.creativesewing.co.nz/. |
[200] | WEB-29, Loominous, 2014, Text @ http://www.loominous.co.uk/studio.html. |
[201] | WEB-30, Cornell University - Fabrics of our livelihoods, 2014, @ http://smallfarms.cornell.edu/2011/07/04/fabrics-of-our-livelihoods/. |
[202] | WEB-31, CMI, 2014, Text @ www.colonialmills.com/PublicStore/catalog/BraidingProcess,156.aspx. |
[203] | WEB-32, Textile innovation knowledge platform, 2014, @ www.tikp.co.uk/knowledge/technology/coating-and-laminating/laminating. |
[204] | WEB-33, Custom fabric printing, 2014, @ http://sophiasdecor.blogspot.it/2012/09/insidespoonflower-custom-fabric.html. |
[205] | 3WEB-34, Durable water repellent, 2014, Text @ http://en.wikipedia.org/wiki /Durable_water_repellent. |
[206] | McFarland, E. G., Carr, W. W., Sarma, D. S., Dorrity, J. S., 1999, Effects of moisture and fiber type on infrared absorption of fabrics, Text. Res. J., 69, 607-15. |
[207] | WEB-35, Resistat fiber collection, 2014, Text @ http://www.resistat.com/. |
[208] | WEB-36, LessEMF, 2013, Text @ http://www.lessemf.com/fabric.html. |
[209] | WEB-37, Sophitex Ltd., 2014, Text @ http://www.sophitex.com. |
[210] | M. Redström, J. Redström, R. Mazé, 2005, IT + Textiles, 1st Edition; The Interactive Institute - Boràs, Sweden, 2005, 59–93. |
[211] | Mac, T., Houis, S., Gries, T., 2004, Metal fibers. Proc. Int. Conf. Shape Memory and Super-elastic Technologies, Baden-Baden, Germany; 3–7 October 2004, Volume 47. |
[212] | WEB-38, Elektrisola feindraht AG, 2014, Text @ www.textile-wire.com. |
[213] | Gimpel, S., Moehring, U., Mueller, H., Neudeck, A., Scheibner, W., 2003, The galvanic and electrochemical modification of textiles, Band-und Flechtind, 40, 115-20. |
[214] | Hamedi, M., Forchheimer, R., Inganäs, O., 2007. Towards woven logic from organic electronic fibers, Nature Mater., 6, 357-62. Sensors, 2014, 14, 11988. |
[215] | Müller, C., Hamedi, M., Karlsson, R., Jansson, R., Marcilla, R., Hedhammar, M., Inganäs, O., 2011, Woven electrochemical transistors on silk fibers, Adv. Mater., 6, 898-901. |
[216] | I. Locher, 2006, Technologies for system-on-textile integration. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland. |
[217] | Walker, S. B., Lewis, J. A., 2012, Reactive silver inks for patterning high-conductivity features at mild temperatures, J. Am. Chem. Soc., 134 (3), 1419-21. |
[218] | Vaithilingam, J., Simonelli, M., Saleh, E., Senin, N., Wildman, R. D., Hague, J. M., Leach, R. K., Tuck, C. J., 2017, Combined inkjet printing and infrared sintering of silver NPs using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures. ACS Appl. Mater. Interfaces, 9 (7), 6560-70. |
[219] | Xu, X., Bai, B., Wang, H., Suo, Y., 2017, A near-infrared and temperature-responsive pesticide release platform through core–shell polydopamine @PNIPAm nano composites. ACS Appl. Mater. Interfaces, 9 (7), 6424-32. |
[220] | Gu, J., Xiao, P., Chen, P., Zhang, L., Wang, H., Dai, L., Song, L., Huang, Y., Zhang, J., Chen, T., 2017, Functionalization of biodegradable PLA nonwoven fabric as super-oleophilic and super-hydrophobic material for efficient oil absorption and oil/water separation. ACS Appl. Mater. Interfaces, 9 (7), 5968-73. |
[221] | Raturi, P., Yadav, K., Singh, J. P., 2017, ZnO-nanowires-coated smart surface mesh with reversible wettability for efficient on-demand oil/water separation, ACS Appl. Mater. Interfaces, 9 (7), 6007-13. |
[222] | Gao, F., Zhang, N., Fang, X., Ma, M., 2017, Bio-inspired design of strong, tough, and highly conductive polyol-polypyrrole composites for flexible electronics, ACS Appl. Mater. Interfaces, 9 (7), 5692-98. |
[223] | Ghosale, A., Shrivas, K., Shankar, R., Ganesan, V., 2017, Low-cost paper electrode fabricated by direct writing with silver nanoparticle-based ink for detection of hydrogen peroxide in wastewater, Anal. Chem., 89 (1), 776-82. |
[224] | Liu, X., Mwangi, M., Li, X. J., O’Brien, M., Whitesides, G. M., 2011, Paper-based piezoresistive MEMS sensors, Lab on a Chip 11(13), 2189-2196. |
[225] | Zocco, A. T., You, H., Hagen, J. A., Steckl, A. J., 2014, Pentacene organic thin-film transistors on flexible paper and glass substrates, Nanotechnology, 25(9), 094005. |
[226] | Pereira, L., Gaspar, D., Guerin, D., Delattre, A., Fortunato, E., Martins, R., 2014, The influence of fibril composition and dimension on the performance of paper gated oxide transistors, Nanotechnology, 25(9), 094007. |
[227] | Gaspar, D., Fernandes, S. N., de Oliveira, A. G., Fernandes, J. G., Grey, P., Pontes, R. V., Pereira, L., Martins, R., Godinho, M. H., Fortunato, E., 2014, Nano crystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors, Nanotechnology, 25(9), 094008. |
[228] | Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J., Hu, L., 2013, Highly transparent and flexible nano paper transistors, ACS Nano, 7(3), 2106-13. |
[229] | Xiong, R., Han, Y., Wang, Y., Zhang, W., Zhang, X., Lu, C., 2014, Flexible, highly transparent and iridescent all-cellulose hybrid nano paper with enhanced mechanical strength and writable surface, Carbohydr. Polym., 113, 264-71. |
[230] | Zhu, H., Parvinian, S., Preston, C., Vaaland, O., Ruan, Z., Hu, L., 2013, Transparent nano paper with tailored optical properties, Nanoscale., 5(9), 3787-92. |
[231] | Hsieh, M. C., Koga, H., Suganuma, K., Nogi, M., 2017, Hazy transparent cellulose nano paper, Sci. Rep., 7, 41590. |
[232] | Andersson, H. A., Manuilskiy, A., Haller, S., Hummelgård, M., Sidén, J., Hummelgård, C., Olin, H., Nilsson, H. E., 2014, Assembling surface mounted components on ink-jet printed double-sided paper circuit board, Nanotechnology, 25(9), 094002. |
[233] | Kim, J. H., Mun, S., Ko, H. U., Yun, G. Y., Kim, J., 2014, Disposable chemical sensors and biosensors made on cellulose paper, Nanotechnology, 25(9), 092001. |
[234] | Khan, Z. A., Kim, H. S., Kim, J., 2016, Recent progress on cellulose-based electro-active pPaper, its hybrid nanocomposites and applications. Sensors (Basel), 16(8), pii: E1172. |
[235] | Kim, J., Yun, S., Mahadeva, S. K., Yun, K., Yang, S. Y., Maniruzzaman, M., 2010, Paper actuators made with cellulose and hybrid materials, Sensors (Basel), 10(3), 1473-85. |
[236] | Zheng, G., Cui, Y., Karabulut, E., Wågberg, L., Zhu, H., Hu, L., 2013, Nanostructured paper for flexible energy and electronic devices, MRS Bull., 38 (2013), 320. |
[237] | Hu, L., Choi, J. W., Yang, Y., Jeong, S., La Mantia, F., Cui, L. F., Cui, Y., 2009, Highly conductive paper for energy-storage devices, PANAS (U.S.), 106, 21490. |
[238] | Nyström, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A., 2009. |
[239] | Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., Cheng, H.-M., 2011, Graphene–cellulose paper flexible super capacitors, Adv. Energy Mater., 1, 917. |
[240] | Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Cui, Y., Eskilsson, M., Karabulut, E., Wågberg, L., Ruan, Z., Fan, S., Bloking, J. T., McGehee, M. D., 2013, Transparent and conductive paper from nano cellulose fibers, Energy Environ. Sci., 6, 513. |
[241] | Zheng, G., Hu, L., Wu, H., Xie, X., Cui, Y., 2011, Paper super capacitors by a solvent-free drawing method, Energy Environ. Sci., 4, 3368. |
[242] | Nogi, S. I., Nakagaito, A. N., Yano, H., 2009, Optically transparent nano fiber paper, Adv. Mater., (Weinheim, Ger.) 21, 1595. |
[243] | Nakagaito, N., Nogi, M., Yano, H., 2010, Displays from transparent films of natural nano fibers, MRS Bull., 35(3), 214-18. |
[244] | Olsson, R. T., Samir, M. A. S. A., S.r Alvarez, G., Belova, L., Strom, V., Berglund, L. A., Ikkala, O., Nogues, J., Gedde, U. W., 2010. Making flexible magnetic aerogels and stiff magnetic nano paper using cellulose nano fibrils as templates. Nat. Nanotechnol. 5: 584. |
[245] | Sehaqui, H., Liu, A., Zhou, Q., Berglund, L. A., 2010, Fast preparation procedure for large, flat cellulose and cellulose/inorganic nano paper structures, Biomacromolecules, 11, 2195. |
[246] | Klemm, F. K., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A., 2011, Nano celluloses: a new family of nature-based materials. Angew. Chem. Int. Edition. 50, 5438. |
[247] | Zhu, H., Parvinian, S., Preston, C., Vaaland, O., Ruan, Z., Hu, L., 2013, Transparent nano paper with tailored optical properties, Nanoscale, 5(9), 3787-92. |
[248] | Sehaqui, H., Mushi, N. E., Morimune, S., Salajkova, M., Nishino, T., Berglund, L. A., 2012, Cellulose nano fiber orientation in nano paper and nano composites by cold drawing, ACS Appl. Mater. Interfaces, 4, 1043. |
[249] | Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J., Hu, L., 2012, Highly transparent and flexible nano paper transistors, ACS Nano, doi: 10.1021/nn304407r (2012). |
[250] | Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z., Fan, S., Bloking, J. T., McGehee, M. D., Wågberg, L., Cui, Y., 2013, Transparent and conductive paper from nano cellulose fibers, Energy Environ. Sci., 6, 513. |
[251] | Tobjörk, D., Österbacka, R., 2011, Paper Electronics, Adv. Mater. (Weinheim, Germany) 23(17), 1935-61. |
[252] | Zhou, Q., Berglund, L. A., 2015, PLA-nano cellulose bio composites, A. Jiménez, M. Peltzer, R. Ruseckaite (Editors). Poly (lactic acid) science and technology: processing, properties, additives and applications, Cambridge, UK, Royal Soc. of Chemistry, 225–39 [chapter 9]. |
[253] | Pei, J. M., Ruokolainen, J., Zhou, Q., Berglund, L. A., 2011, Strong nano composite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals, Macromolecules, 44(11), 4422–7. |
[254] | Favier, V., Chanzy, H., Cavaille, J. Y., 1995, Polymer nano composites reinforced by cellulose whiskers, Macromolecules, 28(18), 6365–7. |
[255] | Samir, M. A. S. A., Alloin, F., Sanchez, J., El Kissi, N., Dufresne, A., 2004, Preparation of cellulose whiskers reinforced nano composites from an organic medium suspension, Macromolecules, 37(4), 1386–93. |
[256] | Lönnberg, L. F., Samir, M. A. S. A., Berglund, L., Malmström, E., Hult, A., 2008, Surface grafting of micro fibrillated cellulose with poly (e-caprolactone)–synthesis and characterization, Eur. Polym. J., 44(9), 2991–7. |
[257] | Lee, K. Y., Blaker, J. J., Bismarck, A., 2009, Surface functionalization of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties, Comp. Sci. Technol., 69(15), 2724–33. |
[258] | Pei, Q. Z., Berglund, L. A., 2010, Functionalized cellulose nano crystals as bio based nucleation agents in poly (l-lactide)(PLLA)-crystallization and mechanical property effects, Comps. Sci. Technol., 70(5), 815–21. |
[259] | Bulota, M., Hughes, M., 2012, Toughening mechanisms in poly (lactic) acid reinforced with TEMPO-oxidized cellulose, J. Mater. Sci., 47(14),: 5517–23. |
[260] | Jonoobi, M., Mathew, A. P., Abdi, M. M., Makinejad, M. D., Oksman, K., 2012, A comparison of modified and unmodified cellulose nano fiber reinforced polylactic acid (PLA) prepared by twin-screw extrusion, J. Polym. Environ., 20(4), 991–7. |
[261] | Qu, Y. Z., Zhang, X., Yao, S., Zhang, L., 2012, Surface modification of cellulose nano fibrils for poly (lactic acid) composite application, J. Appl. Polym. Sci., 125(4), 3084–91. |
[262] | Quero, S. J. E., Nogi, M., Yano, H., Lee, K., Bismarck, A., 2012, Interfaces in cross-linked and grafted bacterial cellulose/poly (lactic acid) resin composites, J. Polym. Environ., 20(4), 916–25. |
[263] | Robles, U., Labidi, J., Serrano, L., 2015, Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites, Ind. Crop Prod., 71, 44–53. |
[264] | Tang, N. B., Zhou, Q., 2015, A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nano fibrils bearing poly (ethylene glycol), Adv. Mater., 27(12), 2070–6. |
[265] | Yang, W., Dominici, F., Fortunati, E., Kenny, J. M., Puglia, D., 2015, Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: effect of cellulose nano crystals and a master batch process, RSC Adv., 5(41), 32350–7. |
[266] | Oksman, K., Aitomäki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., Hooshmand, S., 2016, Review of the recent developments in cellulose nano composite processing, Composites: Part A, 83, 2–18. |
[267] | Bondeson, D., Oksman, R., 2007, Dispersion and characteristics of surfactant modified cellulose whiskers nano composites, Compos. Interf., 14(7–9), 617–30. |
[268] | Kim, G. M., Habibi, Y., Hinestroza, J. P., Genzer, J., Argyropoulos, D. S., Rojas, O. J., 2009, Dispersion of cellulose crystallites by nonionic surfactants in hydrophobic polymer matrix, Polym Engg. Sci., 49(10), 2054. |
[269] | Salajková, M., Berglund, L. A., Zhou, Q., 2012, Hydrophobic cellulose nano crystals modified with quaternary ammonium salts, J. Mater. Chem., 22 (37), 19798–805. |
[270] | Shimizu, M., Saito, T., Isogai, A., 2014, Bulky quaternary alkylammonium counter ions enhance the nano dispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyloxidized cellulose in diverse solvents, Biomacromolecules, 15 (5), 1904–9. |
[271] | Eyholzer, F. L.-S., Tingaut, P., Zimmermann, T., Oksman, K., 2010, Reinforcing effect of carboxy-methylated nano fibrillated cellulose powder on hydroxypropyl cellulose, Cellulose, 17(4), 793–802. |
[272] | Isogai, T. S., Fukuzumi, H., 2011, TEMPO-oxidized cellulose nano fibers, Nanoscale, 3(1), 71–85. |
[273] | Eyholzer, P. T., Zimmermann, T., Oksman, K., 2012, Dispersion and reinforcing potential of carboxymethylated nano fibrillated cellulose powders modified with 1-hexanol in extruded poly (lactic acid)(PLA) composites, J. Polym. Environ., 20(4), 1052–62. |
[274] | Espino-Pérez, S., Domenek, S., Belgacem, N., Sillard, C., Bras, J., 2014, Green process for chemical functionalization of nano cellulose with carboxylic acids, Biomacromolecules, 15(12), 4551–60. |
[275] | Hajji, P., Cavaille, V., Favier, C., Gauthier, G., Vigier, G., 1996, Tensile behavior of nano composites from latex and cellulose whiskers, Polym. Compos., 17(4), 612–9. |
[276] | Polly, J., January 26, 2015, What is the Future of RFID Technology? @ www.lowrysolutions.com/future-rfid-technology/. |
[277] | Matsuhisa, N., Kaltenbrunner, M., Yokota, T., Jinno, H., Kuribara, K., Sekitani, T., Someya, T., 2015, Printable elastic conductors with a high conductivity for electronic textile applications, Nature Commu., 6, Article number: 7461(2015). |
[278] | Rivera, M. L., Moukperian, M., Ashbrook, D., Mankoff, J., Hudson, S. E., 2017, Stretching the bounds of 3D printing with embedded textiles, @ https://0x9.me/Ohc5H. |
[279] | WEB-39. Finland – home of intelligent electronics, January 12, 2016, @ www.goodnewsfinland.com/finland-home-of-intelligent-electronics/ |
[280] | WEB-40, Nano dimension uses multilayer 3D printing to add conductive properties to fabric, posted by Nano Dimension on September 20, 2016, 10:38:05 AM IDT, Text @ https://0x9.me/tQRCP |
[281] | Guo, Y., Otley, M. T., Li, M., Zhang, X., Sinha, S. K., Treich, G. M., Sotzing, G. A., 2016, PEDOT: PSS “109. Wires” printed on textile for wearable electronics, ACS Appl. Mater. Interfaces, 8 (40), 26998–27005. |
[282] | Ryan, D., Mengistie, D. A., Gabrielsson, R., Lund, A., Müller, C., 2017, Machine-washable PEDOT: PSS dyed silk yarns for electronic textiles, ACS Appl. Mater. Interf., 9 (10), 9045-50. |
[283] | Cheng, N., Zhang, L., Kim, J. J., Andrew, T. L., 2017, Vapor phase organic chemistry to deposit conjugated polymer films on arbitrary substrates, J. Mater. Chem. C, Advance article. |
[284] | Teo, Y., Kim, N., Kee, S., Kim, B. S., Kim, G., Hong, S., Jung, S., Lee, K., 2017, Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics, ACS Appl. Mater. Interfaces, 9 (1), 819-26. |
[285] | Amjadi, A., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I., 2014, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nano composite, ACS Nano, 8 (5), 5154-63. |
[286] | Wu, S., Zhang, J., Ladani, R. B., Ravindran, A. R., Mouritz, A. P., Kinloch, A. J., Wang, C. H., 2017, Novel electrically conductive porous PDMS/Carbon nano fiber composites for deformable strain sensors and conductors, ACS Appl. Mater. Interfaces, 9 (16), 14207–15. |
[287] | He, X., Zhang, C., Wang, M., Zhang, Y., Liu, L., Yang, W., 2017, An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties, ACS Appl. Mater. Interfaces, 9 (12), 11134-43. |
[288] | Jiang, H., Wang, Z., Geng, H., Song, X., Zeng, H., Zhi, C, 2017, Highly flexible and self-healable thermal interface material based on Boron Nitride nano sheets and a dual cross-linked hydrogel, ACS Appl. Mater. Interf., 9 (11), 10078-84. |
[289] | Loeblein, M., Tsang, S. H., Pawlik, M., Phua, E. J. R., Yong, H., Zhang, X. W., Gan, C. L., Teo, E. H. T., 2017, High-density 3D-Boron Nitride and 3D-Graphene for high-performance nano–thermal interface material, ACS Nano, 11 (2), 2033-44. |
[290] | Lin, X., Zhao, W., Zhou, W., Liu, P., Luo, S., Wei, H., Yang, G., Yang, J., Cui, J., Yu, R., Zhang, L., Wang, J., Li, Q., Zhou, W., Zhao, W., Fan, S., Jiang, K., 2017, Epitaxial growth of aligned and continuous carbon nano fibers from carbon nanotubes, ACS Nano, 11 (2), 1257-63. |
[291] | Salvatierra, V., Zakhidov, D., Sha, J., Kim, N. D., Lee, S.-K., Raji, A.-R. O., Zhao, N., Tour, J. M., 2017, Graphene carbon nanotube carpets grown using binary catalysts for high-performance Lithium-ion capacitors, ACS Nano, 11(3), 2724-33. |
[292] | Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Li, T., Wu, J., Huang, L., Gogotsi, Y., Zhou, J., 2017, Salt-templated synthesis of 2D metallic MoN and other nitrides, ACS Nano, 11 (2), 2180-6. |
[293] | Beniwal, S., Hooper, J., Miller, D. P., Costa, P. S., Chen, G., Liu, S.-Y., Dowben, P. A., Sykes, E. C. H., Zurek, E., Enders, A., 2017, Graphene-like B–C–N monolayers, ACS Nano, 11 (3), 2486-93. |
[294] | Xu, K., Chen, D., Yang, F., Wang, Z., Yin, L., Wang, F., Cheng, R., Liu, K., Xiong, J., Liu, Q., He, J., 2017, Sub-10nm nano pattern architecture for 2D material field-effect transistors, Nano Lett., 17 (2), 1065-70. |
[295] | Nourbakhsh, A., Zubair, A., Sajjad, R. N., Tavakkoli, K. G. A., Chen, W., Fang, S., Ling, X., Kong, J., Dresselhaus, M. S., Kaxiras, E., Berggren, K. K., Antoniadis, D., Palacios, T., 2016, MoS2 field-effect transistor with sub-10 nm channel length, Nano Lett., 16 (12), 7798–7806. |
[296] | Lee, H., Gul, H. Z., Kim, H., Moon, B. H., Adhikari, S., Kim, J. H., Choi, H., Lee, Y. H., Lim, S. C., 2017, Photocurrent switching of monolayer MoS2 using a metal–insulator transition, Nano Lett., 17 (2), 673-8. |
[297] | Homan, B., Sangwan, V. K., Balla, I., Bergeron, H., Weiss, E. A., Hersam, M. C., 2017, Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic Pentacene–MoS2 van der Waals hetero junction, Nano Lett., 17 (1), 164-9. |
[298] | McMorrow, J. J., Cress, C. D., Arnold, H. N., Sangwan, V. K., Jariwala, D., Schmucker, S. W., Marks, T. J., Hersam, M. C., 2017, Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors, Appl. Phys. Lett., 110, 073102. |
[299] | Kang, M., Kim, B., Ryu, S. H., Jung, S. W., Kim, J., Moreschini, L., Jozwiak, C., Rotenberg, E., Bostwick, A., Kim, K. S., 2017, Universal mechanism of band-gap engineering in transition-metal dichalcogenide, Nano Lett., 17 (3), 1610–1615. |
[300] | Jing, Y., Ma, Y., Li, Y., Heine, T., 2017, GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement, Nano Lett., 17 (3), 1833-8. |
[301] | Rhodes, D., Chenet, D. A., Janicek, B. E., Nyby, C., Lin, Y., Jin, W., Edelberg, D., Mannebach, E., Finney, N., Antony, A., Schiros, T., Klarr, T., Mazzoni, A., Chin, M., Chiu, Y.-c., Zheng, W., Zhang, Q. R., Ernst, F., Dadap, J. I., Tong, X., Ma, J., Lou, R., Wang, S., Qian, T., Ding, H., Osgood Jr., R. M., Paley, D. W., Lindenberg, A. M., Huang, P. Y., Pasupathy, A. N., Dubey, M., Hone, J., Balicas, L., 2017, Engineering the structural and electronic phases of MoTe2 through W substitution, Nano Lett., 17 (3), 1616-22. |
[302] | Tian, Z., Guo, C., Zhao, M., Li, R., Xue, J., 2017, Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy, ACS Nano, 11 (2), 2219-26. |
[303] | WEB-41, OECD (Organization for Economic Co-operation and Development) – 24 May 2016, Directorate for Science, Technology and Innovation Committee on Digital Economy Policy’, Working Party on Communication Infrastructures and Services Policy, The Internet of Things: Seizing the benefits and addressing the challenges; Background report for ministerial panel 2.2, @ https://0x9.me/Kbev4. |
[304] | WEB-42, India ahead of other markets in adopting IoT to improve customer experience, ETCIO, March 28, 2017, @ https://0x9.me/24dfr. |
[305] | WEB-43, Gaskell, The role of HR in an automated World. Mar. 2, 2017, @www.forbes.com/sites/adigaskell/2017/03/02/the-role-of-hr-in-an-automated -world/#6e049c1c 2458. |
[306] | WEB-44, Wehkamp.nl, an online retailer announced world’s largest robotic distribution center to replace its traditional warehouse enabling order-to-package times of 30 minutes and same day delivery managed by robots picking goods, moving to/from stations before employees picking and packing the goods, Text @ www.youtube.com/watch?v=Q5eie0IgccY. |
[307] | WEB-45, A self-driving 18-wheeler was cleared by Nevada for testing on public roads, The Guardian, May 6, 2015, @ https://0x9.me/vwuFg. |
[308] | WEB-46, Association of German Chambers of Commerce and Industry (Deutscher Industrie-und Handelskammertag, DIHK), “Wirtschaft 4.0: Große Chancen, viel zu tun, @ www.dihk.de/ressourcen/downloads/ihk-unternehmensbarometer-digitalisierung.pdf. |
[309] | WEB-47, PWC, Strategy connected car, 2014. |
[310] | WEB-48, R. Pepper, Global Technology Policy, Cisco, The rise of M2M devices. |
[311] | WEB-49, Canedo, Industrial IoT lifecycle via digital twins, Hardware/software co-design and system synthesis (CODES+ISSS), 2016, Int. Conf. 2-7 October 2016, Pittsburgh, PA, USA. |
[312] | WEB-50, Bowers, April 22, 2016, The benefits of the Industrial Internet of Things, @ www.designworldonline.com/benefits-industrial-internet-things/#. |
[313] | WEB-51, Drones for agriculture, ICT Updates, 82, April 2016. |
[314] | WEB-52, Meola. December 20, 2016, Why IoT, big data & smart farming are the future of agriculture? @ http://www.businessinsider.com/internet-of-things-smart-agriculture-2016-10?IR=T. |
[315] | WEB-53, Fraunhofer ESK, Fraunhofer Institute for Embedded Systems and Communication Technologies,Harvesters joining IoT, @ www.esk.fraunhofer.de/en/research/projects/holmer.html. |
[316] | WEB-54, With farm robotics, the cows decide when it’s milking time, New York Times, April 2014, @ https://0x9.me/45vB2. |
[317] | WEB-55, Owen-Hill, December 26, 2016, The Internet of Things: Why robotics is ahead in top trends? @ http://blog.robotiq.com/the-internet-of-things-why-robotics-is-ahead-with-2016s-top-trend-0. |
[318] | Murray, S., 2015, How the Internet of things can speed up health delivery, Financial Times, 6 April 2015, @ https://0x9.me/rcaXZ @ www.proteus.com/technology/digital-health-feedback-system/. |
[319] | Robinson, M., 2015, From old public administration to the new public service - implications for Public Sector Reform in developing countries, 2015, UNDP Global Centre for Public Service Excellence #08-01, Block A, 29 Heng Mui Keng Terrace, 119620, Singapore. |
[320] | WEB-56, Gartner identifies the top 10 strategic technology trends for Smart Government @ http://www.gartner.com/newsroom/id/2707617. |
[321] | WEB-57, Wagenpark op nieuw spoor, Jopke Rozenberg - van Lisdonk, Defensie Magazine, February, 2014, Text @ http://magazines.defensie.nl/pijler/2014 /02/ pnod. |
[322] | WEB-58, ‘SCOOT’ (developed by Transport Research Laboratory + UK Traffic Systems Industry) uses sensors at intersections for traffic data and a computer adjusts light timings to allow traffic to flow efficiently, @ www.gizmag.com/pedestrian-scoot/31154/. |
[323] | WEB-59, Introducing ‘SCOOT’, @ www.scoot-utc.com/GeneralResults.php?Menu =Results. |
[324] | WEB-60, Autonomous intersection management: traffic control for the future, University of Texas, @ www.youtube.com/watch?v=4pbAI40dK0A. |
[325] | WEB-61, Murray, S., 2015, How the Internet of things can speed up health delivery? Financial Times, 6 April 2015, @www.ft.com/intl/cms/s/0/8ad4d226-bdcc-11e4-8cf3-00144feab7de.html#axzz 3XDyfx4Kw; @www.proteus.com/technology/digital-health-feedback-system/. |
[326] | Abrams, M., Weiss, J., 2008, Malicious control system cyber security attack case study - Maroochy Water Services, Australia, @ https://0x9.me/cHnRk. |
[327] | WEB-62, Slammer worm crashed Ohio nuke plant network, 2003, @ www.Securityfocus.com/ news/6767. |
[328] | WEB-63, Cisco, 2015, The IoT threat environment, @ www.cisco.com/c/dam/en/us/products/collateral/se/internetof-things/C11-735871.pdf. |
[329] | WEB-64, Tudor, Z., Fabro, M., 2010, What went wrong? A study of industrial cyber security incidents. |
[330] | WEB-65, Insider charged with hacking California canal system, 2007,@ https://0x9.me/IYafp. |
[331] | WEB-66, SANS News bites, Volume X - Issue #4. 2008, @ www.sans.org/newsletters/newsbites/x/4and CISCO (2015). |
[332] | WEB-67, Hacker Movie: Zombies Ahead, 2011, @ www.computerweekly.com/blogs/it-downtimeblog/2011/03/movie-zombies-versus-hackers.html. |
[333] | WEB-68, Cyber-attack claims at US water facility, FBI and Homeland Security to investigate shutdown of a water pump suspected to be work of foreign hackers, 2011, text @ www.theguardian.com/world/2011/nov/20/cyber-attack-us-water-utility. |
[334] | WEB-69, SANS ICS (2014), German steel mill cyber attack, text @ https://ics.sans.org/media/ICS-CPPE-case-Study-2-GermanSteelworks_Facility.Pdf. |
[335] | WEB-70, Greenberg 2015, Hackers remotely kill a jeep on the highway-with Me in it, @ www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ and A. Greenberg, 2015, After jeep hack, Chrysler recalls 1.4M vehicles for bug fix, http://www.wired.com/2015/07/jeep-hackchrysler-recalls-1-4m-vehicles-bug-fix. |
[336] | WEB-71, N. Perlroth, 2012, Cameras may open up the Board Room to hackers, @ https://0x9.me/4rQt3. |
[337] | D. Storm, 2015, MEDJACK: Hackers hijacking medical devices to create backdoors in hospital networks, @ https://0x9.me/U6yKC. |
[338] | WEB-72, Potoczny-Jones, 2015, IoT security & privacy: reducing vulnerabilities @ www.networkcomputing.com/internet-things/iot-security-privacy-reducing vulnerabilities/ 807681850. |
[339] | WEB-73, Hewlett Packard Enterprise, 2015, Internet of things research study, 2015 Report, @ www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf. |
[340] | WEB-74, @ www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf. |
[341] | OECD, 2014, Guidelines on the Protection of Privacy and Trans border Flows of Personal Data, @ https://0x9.me/Ld2R0. |
[342] | WEB-75, Study carried out by ‘La Poste’ in December 2014, @ www.docapost.com/wpcontent/uploads/2015/01/infographie-la-poste-generique.Pdf. |
[343] | WEB-76, Global M2M Internet traffic: From 1% (2014) to only 3% in 2019, @ https://0x9.me/lex2y. |
[344] | WEB-77, US based companies: Intel, IBM, Google, General Electric, Qualcomm and Cisco, @ www.cbronline.com/news/internet-of-things/behold-the-10-biggest-iot-investments-4549522. |
[345] | WEB-78, Harbor Research. IoT Investment heats up in January, 2017, @ http://harborresearch.com/iot-investment-update-january-2017/. |
[346] | WEB-79, P. C. Evans, and M. Annunziata, 2012, Industrial Internet: pushing the boundaries of minds and machines, November 2012, @ www.ge.com/docs/chapters/Industrial_Internet.pdf. |
[347] | WEB-80, Vodafone M2M Barometer, 2015, p. 3. |
[348] | WEB-81, Navigant Research, @ https://0x9.me/zlAEL. |
[349] | WEB-82, GSMA - Understanding the Internet of Things (IoT), July 2014, p. 4. |
[350] | WEB-83, Morgan Stanley: Autonomous Cars: The future is now, @ www.Morganstanley.com/articles/autonomous-cars-the-future-is-now/. |
[351] | Lopez, E., McKevitt, J., February 8, 2017, Report: Business IoT adoption to triple by 2020, @ www.supplychaindive.com/news/iot-is-expanding-exponentially/435667/. |
[352] | WEB-84, Big IoT adoption on horizon, claims new report, Apr. 19, 2017, @ www.retailcustomerexperience.com/news/big-iot-adoption-on-horizon-claims-new-report/. |